Answer:
6.533 × 10^-21J
Explanation:
The energy of the microwave photon can be calculated using:
E = hf
Where;
E = energy of photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency (9.86 x 10^12 Hz)
Hence, E = hf
E = 6.626 × 10^-34 × 9.86 x 10^12
E = 65.33 × 10^(-34 + 12)
E = 65.33 × 10^(-22)
E = 6.533 × 10^-21J
The energy of the microwave photon is
6.533 × 10^-21J
Answer:
A
Explanation:
B and D have to do with plants
and C has nothing to do with cellular resporation.
Answer: Your best answer is A.
Explanation: 1.35 is a constant and thus is does not change. The equation can be simplified to-
“b = (0.29 x h)+ 1.35”
So, if your rider is say 60 inches tall, the equation would change to-
“b = (0.29 x 60)+ 1.35”
Then to-
“b = (17.4) + 1.35” or “b = 17.4 + 1.35”
And therefore the size of the BMX bike frame in inches would be-
“b = 18.75”
Hope this helped :)
Answer:
Approximately
, assuming that this acid is monoprotic.
Explanation:
Assume that this acid is monoprotic. Let
denote this acid.
.
Initial concentration of
without any dissociation:
.
After
of that was dissociated, the concentration of both
and
(conjugate base of this acid) would become:
.
Concentration of
in the solution after dissociation:
.
Let
,
, and
denote the concentration (in
or
) of the corresponding species at equilibrium. Calculate the acid dissociation constant
for
, under the assumption that this acid is monoprotic:
.