Answer:
E° = -0.133 V
Explanation:
In the reaction:
X(s) + Y⁺(aq) → X⁺(aq) + Y(s)
<em>1 electron is transferred from X to Y</em>
Now, using Nernst equation:
E° = RT / nF ln K
<em>Where R is gas constant (8.314 J/molK), T is absolute temperature (Usually 298.15K), n are transferred electrons (1, for the reaction), F is faraday constant (96485C/mol) and K is equilibrium constant (5.59x10⁻³)</em>
Replacing:
E° = 8.314 J/molK*298.15K / 96485C/mol*1 ln 5.59x10⁻³
<em>E° = -0.133 V</em>
Answer:
it could be 25degrees c... not sure
As a result, the greatest number of an atom's oxidation state will gradually rise over each period of the periodic table. For instance, the third period's highest value of the oxidation number will fall between 1 and 7.
- The Periodic Table only consistently varies the oxidation numbers of Group 1 and Group 2 metals in their compounds, which are always +1 and +2, respectively.
- Elements have an increasing number of valence electrons that can range from 1 to 8 and move from left to right over time. However, when H or O are added to an element first, the element's valency rises to 4, then falls to zero.
<h3>What causes a rise in the oxidation number?</h3>
An increase in oxidation number results from the loss of negatively charged electrons, whereas a reduction in oxidation number results from the gain of electrons. The result is a rise in the oxidation number of the oxidized element or ion.
<h3>Pattern of the Period 2?</h3>
The trends in Period 2 are significantly more clear-cut. All elements in period 2 experience a decrease in atomic radius, an increase in electronegativity, and an increase in ionization energy as their atomic number rises.
To know more about Periodic table please click here : brainly.com/question/15987580
#SPJ4
Answer:
i don't know shave all the time
Answer:
The molality of the solution is 3.45 mol/kg
Explanation:
Molality is a type of concentration which shows the moles of solute contained in 1 kg of solvent.
Moles of salt (KCl) = 1.12 moles
Moles of solvent (H₂O) = 18 moles
Let's convert the moles of solvent to mass (mol . molar mass)
18 m . 18g/m = 324 grams
We convert grams to kg → 324 g / 1000 = 0.324 kg
Now we can reach molality
1.12mol / 0.324 kg = 3.45 m