Answer:
Describe what is happening within the system when it is at equilibrium in terms of concentrations, reactions that occur, and reaction rates.
Explanation:
The chemical equilibrium state is the state where the rate of forward reaction becomes equal to the rate of backward reaction.
At this stage the change in concentration of reactants becomes equal to the change in concentration of products.
The reaction will never cease.
That is the reason chemical equilibrium is called dynamic equilibrium.
So, forward and backward reactions will be taking place continuously at equal rates.
Answer : The value of
is 28.97 kJ/mol
Explanation :
To calculate
of the reaction, we use clausius claypron equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= vapor pressure at temperature
= 462.7 mmHg
= vapor pressure at temperature
= 140.5 mmHg
= Enthalpy of vaporization = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![-21.0^oC=[-21.0+273]K=252K](https://tex.z-dn.net/?f=-21.0%5EoC%3D%5B-21.0%2B273%5DK%3D252K)
= final temperature = ![45^oC=[-41.0+273]K=232K](https://tex.z-dn.net/?f=45%5EoC%3D%5B-41.0%2B273%5DK%3D232K)
Putting values in above equation, we get:
![\ln(\frac{140.5mmHg}{462.7mmHg})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{252}-\frac{1}{232}]\\\\\Delta H_{vap}=28966.6J/mol=28.97kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B140.5mmHg%7D%7B462.7mmHg%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B252%7D-%5Cfrac%7B1%7D%7B232%7D%5D%5C%5C%5C%5C%5CDelta%20H_%7Bvap%7D%3D28966.6J%2Fmol%3D28.97kJ%2Fmol)
Therefore, the value of
is 28.97 kJ/mol
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation:
AB → A + B
In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction. The arrow shows the direction in which the reaction occurs.