Answer:
3.
Step-by-step explanation:
Find the midpoint of BC:
midpoint = (-1+5)/2, (2-2)/2 = (2, 0).
The slope of BC = (2 - -2) / (-1-5) = -2/3.
Find the equation of the right bisector of BC:
The slope = -1 / -2/3 = 3/2.
y-y1 = m(x-x1)
y - 0 = 3/2(x - 2)
y = 3/2x - 3.
Now find the equation of the median through C:
The midpoint of AB = (1 - 1)/2, (4+2)/2
= (0, 3).
The equation of the median:
The slope = (-2-3) / (5-0)
= -1.
The equation is:
y - 3 = -1(x - 0)
y -3 = -x.
Now we find the point of intersection by solving the 2 equations:
y - 3 = -x
y = 3/2x - 3
y = -x + 3
So:
3/2x - 3 = -x + 3
3/2x + x = 6
5/2 x = 6
x = 12/5.
y = -12/5 + 3
= -12/5 + 15/5
= 3/5.
The sum of the coordinates = 12/5 + 3 /5
= 15/5
= 3.