For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Explanation:
Law of conservation of momentum states that in an isolated system when two objects collide with each other then total momentum before and after the collision is equal.
Thus, we can conclude that the law of conservation of momentum states that the total momentum of interacting objects does not change. This means the total momentum before a collision or explosion is equal to the to momentum after a collision or explosion.
A guessing answer the best answer but you have had to subtract the answer by the equation that it was giving u
Answer:
more than
Explanation:
In a nuclear fusion reaction, the mass of the products is more than the mass of the reactants.