Answer: The remains of plants and animals are called organic matter.
Explanation:
Data Given:
Time = t = ?
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 107.86/1 = 107.86 g
Amount Deposited = W = 17.3 g
Solution:
According to Faraday's Law,
W = I t e / F
Solving for t,
t = W F / I e
Putting values,
t = (17.3 g × 96500) ÷ (10 A × 107.86 g)
t = 1547.79 s
t = 1.54 × 10³ s
Answer: For example, if electricity is passed through molten lead bromide, the lead bromide is broken down to form lead and bromine. This is what happens during electrolysis: Positively charged ions move to the negative electrode during electrolysis. ... Negatively charged ions move to the positive electrode during electrolysis.
Explanation:
hope this helps you find what your looking for
Answer:
What mass (g) of barium iodide is contained in 188 mL of a barium iodide solution that has an iodide ion concentration of 0.532 M?
A) 19.6
B) 39.1
C) 19,600
D) 39,100
E) 276
The correct answer to the question is
B) 39.1 grams
Explanation:
To solve the question
The molarity ratio is given by
188 ml of 0.532 M solution of iodide.
Therefore we have number of moles = 0.188 × 0.532 M = 0.100016 Moles
To find the mass, we note that the Number of moles =
from which we have
Mass = Number of moles × molar mass
Where the molar mass of Barium Iodide = 391.136 g/mol
= 0.100016 moles ×391.136 g/mol = 39.12 g
Al
Explanation:
The limiting reactant will be Al:
4Al + 3O₂ → 2Al₂O₃
The limiting reactant is the reactant in short supply in a chemical reaction.
Given parameters:
Mass of Al = 30g Molar mass = 27g/mol
Number of moles =
= 
Number of moles of Al = 1.111 mole
Mass of O₂ = 30g, molar mass = 32g/mol
Number of moles =
= 0.94mol
In the reaction:
4 moles of Al reacted with 3 moles of O₂
1.11moles of Al will require
= 0.83mole to react
But we have been given 0.94mole of O₂. This is more than required.
Therefore O₂ is in excess and Al is the limiting reactant.
Learn more:
Limiting reagents brainly.com/question/6078553
#learnwithBrainly