Answer:
AgCl(s)
dissolution
⇌
precipitation Ag+(aq)+Cl−(aq)
Explanation:
dynamic; some of the solid AgCl continues to dissolve, but at the same time, Ag+ and Cl– ions in the solution combine to produce an equal amount of the solid. At equilibrium, the opposing processes have equal rates.
Answer:

Explanation:
Let us consider the reaction:
2 NO₂ + 1/2 O₂ ⇄ N₂O₅
The rate of formation of a substance is equal to the change in concentration of the product divided the change in time:
![r(N_{2}O_{5})=\frac{\Delta [N_{2}O_{5}] }{\Delta t}](https://tex.z-dn.net/?f=r%28N_%7B2%7DO_%7B5%7D%29%3D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7DO_%7B5%7D%5D%20%7D%7B%5CDelta%20t%7D)
The rate of disappearance of a reactant is equal to to the change in concentration of the reactant divided the change in time, with a negative sign so that the rate is always a positive variable.
![r(NO_{2})=-\frac{\Delta[NO_{2}] }{\Delta t}](https://tex.z-dn.net/?f=r%28NO_%7B2%7D%29%3D-%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%20%7D%7B%5CDelta%20t%7D)
![r(O_{2})=-\frac{\Delta[O_{2}] }{\Delta t}](https://tex.z-dn.net/?f=r%28O_%7B2%7D%29%3D-%5Cfrac%7B%5CDelta%5BO_%7B2%7D%5D%20%7D%7B%5CDelta%20t%7D)
The rate of the reaction is equal to the rate of any substance divided its stoichiometric coefficient. In this way, we can relate these expressions:

Answer:
The answer is Barium and Chlorine
The answer is nonelectrolyte