Answer: The property of magnesium that is exhibited by it is DUCTILITY. The correct option is A.
Explanation:
Magnesium is a member of the alkaline earth metals. It occurs in nature, only in the combined state, as Epsom salt, dolomite and in many trioxosilicates( IV) including talc and asbestos. They have the following physical properties:
--> Appearance: they are silvery-white solids
--> Relative density: It has a relative density of 1.74
--> DUCTILITY: it's very ductile in nature
--> melting point: it has a melting point of 660°C.
--> Conductivity: They are good conductor of heat and electricity.
Furthermore, DUCTILITY is the physical property of a metal associated with the ability to be hammered thin or stretched into wire without breaking. A metal such as magnesium can therefore be coiled as a thin ribbon without fracturing due to its ductile physical properties.
Answer:
CH₅N
Explanation:
In the combustion, all of the C in the compound was used to produce CO₂ in a 1:1 ratio. Thus, the moles of CO₂ (MW 44.01 g/mol) produced equals the moles of C in the compound:
(44.0 g)(mol/44.01g) = 0.99977 mol CO₂ = 0.99977... mol C
Similarly, all of the H in the compound was used to produce H₂O in a ratio of 2H:1H₂O. The moles of H₂O (MW 18.02 g/mol) produced was:
(45.0 g)(mol/18.02g) = 2.497...mol H₂O
Moles of H is found using the molar ratio of 2H:1H₂O:
(2.497...mol H₂O)(2H/1H₂O) = 4.994...mol H
The ratio of H to C in the compound is:
(4.994...mol H)/(0.99977... mol C) = 5 H:C
Some NO₂ was produced from the N in the compound. Assuming a 1:1 ratio of C:N, the simplest empirical formula is: CH₅N.
Answer:

Explanation:
We will need a balanced chemical equation with masses, moles, and molar masses.
1. Gather all the information in one place:
Mᵣ: 18.02
2Na + H₂O ⟶ 2NaOH + H₂
m/g: 72.0
2. Moles of H₂O

3. Moles of Na
The molar ratio is 2 mol Na/1 mol H₂O.

From google but i can explain further if needed. <span> The </span>balanced<span> equation for the reaction of interest contains the stoichiometric ratios of the reactants and products; these ratios </span>can<span> be used as </span>conversion factors<span> for mole-to-mole </span>conversions<span>.</span>