1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
3 years ago
8

What statement provides an example of designing a solution in the technological design process? Aerospace engineers need a light

weight material to build a jet. Engineers determine which features the material must have. Engineers test a carbon-plastic compound in a wind tunnel. The carbon-plastic compound is redesigned to save maximum energy.
Physics
2 answers:
scoundrel [369]3 years ago
6 0

Answer:

i have no idea some one help

Explanation:

valina [46]3 years ago
6 0

Answer:

Engineers determine which features the material must have.

Explanation:

got it correct on EDGEN 2021

You might be interested in
1 A 75-g ball is projected from a height of 1.6 m with a horizontal velocity of 2 m/s and bounces from a 400-g smooth plate supp
Tanzania [10]

Answer with explanation:

We are given that  

Mass of ball,m_1=75 g=\frac{75}{1000}=0075kg

1 kg=1000 g

Height,h_1=1.6 m

h_2=0.6 m

Horizontal velocity,v_x=2 m/s

Mass of platem_2=400 g=\frac{400}{1000}=0.4 kg

a.Initial velocity of plate,u_2=0

Velocity before impact=u_1=\sqrt{2gh_1}=\sqrt{2\times 9.8\times 1.6}=5.6m/s

Where g=9.8 m/s^2

Velocity after impact,v_1=\sqrt{2gh_2}=\sqrt{2\times 9.8\times 0.6}=3.4m/s

According to law of conservation of momentum  

m_1u_1+m_2u_1=-m_1v_1+m_2v_2

Substitute the values  

0.075\times 5.6+0=-0.075\times 3.4+0.4v_2

0.4v_2=0.075\times 5.6+0.075\times 3.4

v_2=\frac{0.075\times 5.6+0.075\times 3.4}{0.4}=1.69 m/s

Velocity of plate=1.69 m/s

b.Initial energy=\frac{1}{2}m_1v^2_x+m_1gh_1=\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 1.6=1.326 J

Final energy=\frac{1}{2}m_1v^2_x+m_1gh_2+\frac{1}{2}m_2v^2_2

Final energy=\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 0.6+\frac{1}{2}(0.4)(1.69)^2=1.162 J

Energy lost due to compact=Initial energy-final energy=1.326-1.162=0.164 J

6 0
3 years ago
20.0 -kg cannonball is fired from a cannon with muzzle speed of 1000m/s at an angle of 37.0° with the horizontal. A second ball
Dovator [93]

The mechanical energy for the first and the second ball is

10 ^{7}  \: joules.

Mass of the first ball = 20 kg

The initial speed at which a cannonball is fired from a cannon =1000 m/s

The angle made by the cannonball while being fired from the cannon = 37°

The maximum height reached by the first ball is,

=   \frac{ u {}^{2} _{1}sin {}^{2} θ}{2g}

=    \frac{ {1000}^{2} sin {}^{2}37°}{2 \times 9.8}

= 18478.69 \: m

The maximum height of the first cannonball is 17478.69 m.

The initial speed at which a cannonball is fired from a cannon =1000 m/s

The angle made by the cannonball while being fired from the cannon = 90 °

=   \frac{ u {}^{2} _{2}sin {}^{2} θ}{2g}

=   \frac{ 1000{}^{2}sin^{2} 90°}{2 \times 9.8}[tex] = 51020.41 \: m

For the first ball, total mechanical energy= Potential energy at maximum height + kinetic energy at the maximum height

So, the total mechanical energy is,

= mgh \: + \frac{1}{2}mv {}^{2} _{x}[/tex]

= 20 \times 9.8 \times 18478.64  \times  \frac{20}{2} (1000 \: cos37 °)

= 10 ^{7}  The potential energy at the maximum height, = m _{2}gh

= 20 \times 9.8  \times 51020.41

= 10 ^{7} \:J

Therefore, the total mechanical energy for the first and the

\:second \:  cannonball \:  is  \: 10 ^{7}  \:joules.

To know about energy, refer to the below link:

brainly.com/question/1932868

#SPJ4

5 0
2 years ago
Which of the following describes a referee's job?
Serhud [2]

Answer:

C. Supervising the game to make sure teams are playing fairly

5 0
4 years ago
I need help on 6, 7, 8, and 9
Ivahew [28]
6 is b. part B on 6 is a. 7 is a. partB ON 7 b
5 0
3 years ago
Stress distributed over an area is best described as: a) External force b) Axial force c) Radial force d) Internal resistive for
Anit [1.1K]

Answer:

Option D is the correct answer.

Explanation:

Stress is the force per unit area that tend to change the shape of body.

Stress is defined as internal resistive force per unit area.

         \texttt{Stress}=\frac{\texttt{Internal resistive force}}{\texttt{Area}}

         \sigma =\frac{F}{A}

So, so stress distributed over an area is best described as internal resistive force.

Option D is the correct answer.

8 0
3 years ago
Other questions:
  • Graphs help you see..
    9·1 answer
  • Two identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius
    10·1 answer
  • If you are sitting on a school bus, is the driver in motion (according to your
    14·1 answer
  • A factory worker pushes a 31.0 kg crate a distance of 4.20 m along a level floor by pushing downward at an angle of 32.0 ∘ below
    15·1 answer
  • Who discovered the law of conservation of energy?
    11·2 answers
  • (AKS 3al) Which graph best represents a moving object in a state of equilibrium
    9·1 answer
  • A 80 kg parent and a 20 kg child meet at the center of an ice rink. They place their hands together and push. The parent pushes
    10·1 answer
  • What is a wave in sound and light
    9·2 answers
  • I need heelp can anyone heelp me plz
    11·1 answer
  • Da 6.0 kg wooden crate slides across a wooden floor
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!