Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
For the answer to the question above
Forecasting how a business might do in the future.
Calculating tax.
Doing basic payrolls.
Calculating Revenues.
Producing charts.
--Going past 5--
Inventory tracking
Very (VERY) basic CRM for small businesses
I hope my answer helped you.
Answer:
When like charges come together, they repel each other. For instance, when the north and south poles of a magnet come together, they push each other apart. The like poles in the magnet repel each other and unlike poles attract each other much. The same reaction occurs in like and unlike charges. Also, the repulsion acts along the line between the two charges.
Explanation:
ij jdjcjxjjdjnndnxnsmxnjxjebxnc
Answer:
what this please be clear