Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
That’s really easy ask your teacher and also peace happy
Answer:
1. a 
b 
c 
2. 
Explanation:
a). The work done by the tension is:




b). The work done potential of gravity




c). The work done by the normal force



2. The increase in thermal energy is:





Answer:
31.42383 m/s
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
= Coefficient of kinetic friction = 0.48
s = Displacement = 0.935 m
= Mass of bean bag = 0.354 kg
= Mass of empty crate = 3.77 kg
= Speed of the bean bag
= Speed of the crate
Acceleration


From equation of motion

In this system the momentum is conserved

The speed of the bean bag is 31.42383 m/s