A is the answerrrrrrrrrrrr
Answer:
The answer is the number of protons in its atom
Explanation:
The magnetic part using the Lorentz force is: F = q v x
B,
where v and B are vectors and v x B is the vector cross product.
Magnitude of the force: F = q v B sin(α)
So, sin(α) = F/( e v B), with e the proton charge.
This will give you a value for sin(α), and two potentials
for its opposite.
You will now look for:
sin(α) = 7.40 10^-13/( 1.60 10^-19 * 5 10^6 * 1.78)
= 0.520
So either sin(α) = 0.502 or sin(α) = -0.502
The 1st α = 30.1 degrees or α = 150 degrees.
The 2nd α = 210 degrees or α = 330 degrees.
So we can say that 30.1 degrees and 330 degrees would be minimum and biggest on [0,360]
Sorry but you tell me not to ask for help or answers but you want them yourself
In order to make any headway with this one, it might help
to know how many joules there are in one BTU, ya reckon ?
I went and looked it up on line, you're welcome.
1 BTU = 1055.06 joules .
So if you happen to have 1,152 BTU of energy,
there are 1055.06 joules in each one of them,
and the total is
(1,152 BTU) x (1,055.06 joule/BTU)
= 1,215,429.12 joules .
Scanning the choices for anything close, we notice that choice-'b'
is only about 0.006% less than my answer. So that must be the one
they're fishing for, and they must have used 1055-even for their
conversion factor.