Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Protons
electrons are negatively charged
neutrons are neutral
The kinetic energy of the cart is 24 J.
<u>Explanation:</u>
The acceleration of a given mass from rest to the velocity is known as kinetic energy. It gains energy from acceleration and remains in this state until the speed of the object changes.
The kinetic energy is the given by,
K.E = 1/2 mv^2
Given the mass m = 3 kg, v = 4 m / s.
K.E = 1/2
3
(4)^2
K.E = 24 J.
When the car comes to a stop, the final velocity must be 0 m/s.
Since the car js decelerating in a forward direction, acceleration must be negative.
final v = initial v + a•t
0 = 20 + (-6)t
t = 3.33s
Answer:
The power in this flow is 
Explanation:
Given that,
Distance = 221 m
Power output = 680 MW
Height =150 m
Average flow rate = 650 m³/s
Suppose we need to calculate the power in this flow in watt
We need to calculate the pressure
Using formula of pressure

Where,
= density
h = height
g = acceleration due to gravity
Put the value into the formula


We need to calculate the power
Using formula of power

Put the value into the formula


Hence, The power in this flow is 