Answer:
Explanation:
Let m be the mass of cylinder and r be the radius. It is moving with velocity v and angular velocity is ω. Let I be the moment of inertia of the cylinder.
I = 0.5 mr²
Total kinetic energy, T = 0.5 mv² + 0.5 Iω²
T = 0.5 (mv² + 0.5 mr²ω²)
v = rω
So, T = 0.5 (mv² + 0.5 mv²) = 0.75 mv²
Rotational kinetic energy is
R = 0.5 Iω² = 0.5 x 0.5 mr²ω²
R = 0.25 mv²
So, R / T = 0.25 / 0.75 = 1/3
Answer:
C
Explanation:
The weight will always be different while mass is described as the stuff inside an object, and that stays the same.
Such as it weighs differently in space.
<span>The specific heat (or the amount of heat required to raise the temperature of a unit mass of a substance by 1 degree Celsius) of copper is about 0.386 J/g/degree Celsius. This means that if we supply 0.386 J of energy to 1 gram of copper, its temperature will increase by 1 degree Celsius.</span>
A theorem can be proven (from axioms or prior theorems), using logic.
A hypothesis can be supported by evidence. The more evidence in support of the hypothesis, the more likely the hypothesis is to be correct. However, you’re always at the mercy of contrary evidence appearing in the future, to reduce the likelihood or even invalidate a hypothesis.
A (mathematical) proof suffers no such vulnerability to future evidence, as long as you hold the axioms of the theory to be true, and as long as there was no flaw in the construction of the proof.