Answer:
a.) high amplitude, high frequency
Explanation:
Frequency and amplitude are properties of sound. Varying these properties changes how people perceive sound.
While hearing sound of a particular frequency we call it pitch i.e., the perception of a frequency of sound.
High pitch means high frequency and high frequency is perceived to have a shrill sound.
The loudness of a sound is measured by the intensity of sound i.e., the energy the sound possesses per unit area. As the amplitude increases the intensity increases. So, a loud sound will have higher density.
Hence, the loud shrill whistle will have high frequency and high amplitude.
9514 1404 393
Answer:
1.114 kg/m³
Explanation:
The total mass of the air in the balloon and the balloon + cargo will be the mass of the displaced air. If d is the density of the air in the balloon, then we have ...
2910d +308 = 2910×1.22
Solving for d, we find ...
2910d = 2919(1.22) -308
d = 1.22 -308/2910
d ≈ 1.114 . . . kg/m³
The density of the hot air is about 1.114 kg/m³.
Answer:
Hoop.
Explanation:
The angular acceleration performed at a given torque:

The moments of inertia of each element are described below:
Hoop

Solid sphere

Flat disk

Hollow sphere

The greater the moment of inertia, the greater the torque to obtain the same angular acceleration. Therefore, the hoop requires the largest torque to receive the same angular acceleration.
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is: