<span>
A. The closet point in the Moon's orbit to Earth . . . . . perigee
B. The farthest point in the Moon's orbit to Earth . . . . . apogee
C. The Sun's orbit that is closest to the Moon . . . . . a meaningless description
D. The closest point in Earth's orbit of the Sun . . . . . perihelion
-- The farthest point in Earth's orbit of the Sun . . . . . aphelion
</span>
Answer:
her displacement <em>s=337.5m</em>
Explanation:
check out the above attachment ☝️
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
C.<span>a stable internal attribution</span>
Density is given as

now we have to convert this density into 
now we have




