Answer:
(A) 3.1 m/s
(B) 2.0 s
Explanation:
At the minimum speed, the force of gravity equals the centripetal force.
mg = m v² / r
v = √(gr)
v = √(9.8 m/s² × 1.0 m)
v = 3.1 m/s
The time is the circumference divided by the speed.
t = (2π × 1.0 m) / (3.1 m/s)
t = 2.0 s
The same amount of work being done over a long period of time!
The constant is the temperature of the air that the plants get.
The independent variable is the thing that YOU control. That's the amount of sunlight each plant gets.
The <em>dependent variable</em> is anything that's caused by changes in the independent variable. That's the growth of the plants.
The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
<h3>Conservation of energy</h3>
The amount of energy lost due to air resistance while she was bouncing is determined from the principle of conservation of energy.
ΔE = P.E - Ux
ΔE = mgh - ¹/₂kx²
ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²
ΔE = 3,360 J
Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
Learn more about energy here: brainly.com/question/13881533
#SPJ1