1/4=25%
3/8=37.5%
37.5%+25%=62.5%
62.5%=0.625
5/0.625=8
Morgan has 8 pounds of raisins in her supply.
Answer:
The answer is table C represnts a non funtion
Step-by-step explanation:
Table A, B, D don't repeat any numbers. But Table C has Two 24's in it.
Answer:
∠NMC = 50°
Step-by-step explanation:
The interpretation of the information given in the question can be seen in the attached images below.
In ΔABC;
∠ A + ∠ B + ∠ C = 180° (sum of angles in a triangle)
∠ A + 70° + 50° = 180°
∠ A = 180° - 70° - 50°
∠ A = 180° - 120°
∠ A = 60°
In ΔAMN ; the base angle are equal , let the base angles be x and y
So; x = y (base angle of an equilateral triangle)
Then;
x + x + 60° = 180°
2x + 60° = 180°
2x = 180° - 60°
2x = 120°
x = 120°/2
x = 60°
∴ x = 60° , y = 60°
In ΔBQC
∠a + ∠e + ∠b = 180°
50° + ∠e + 40° = 180°
∠e = 180° - 50° - 40°
∠e = 180° - 90°
∠e = 90°
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
∠i = 50° - 40° = 10°
In ΔNQC
∠f + ∠i + ∠j = 180°
90° + 10° + ∠j = 180°
∠j = 180° - 90°-10°
∠j = 180° - 100°
∠j = 80°
From line AC , at point N , ∠y + ∠c + ∠j = 180° (sum of angles on a straight line)
60° + ∠c + ∠80° = 180°
∠c = 180° - 60°-80°
∠c = 180° - 140°
∠c = 40°
Recall that :
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
Then In Δ NMC ;
∠d + ∠h + ∠c = 180° (sum of angles in a triangle)
∠d + 90° + 40° = 180°
∠d = 180° - 90° -40°
∠d = 180° - 130°
∠d = 50°
Therefore, ∠NMC = ∠d = 50°
Answer:
B. A pair of intersecting lines
Step-by-step explanation:
The attached image can give you an idea of what you get when a plane perpendicular to the base of a cone intersects the vertex of the cone.
__
In the problem statement here, we assume a double-napped cone with no defined base. That means the lines of intersection with the sides of the cone will meet at the vertex point and extend indefinitely in either direction.
The intersection is a pair of intersecting lines.