Answer:
Step-by-step explanation:
Given z = x+iy
The polar form of a complex number 
The nth root of the complex number is expressed according to de moivre's theorem as;
![z^{\frac{1}{n} } = [r(cos\theta + isin\theta)]^{\frac{1}{n} } \\z^{\frac{1}{n} } = \sqrt[n]{r} (cos(\frac{\theta+2nk}{n} ) + isin(\frac{\theta+2nk}{n}))](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%20%3D%20%5Br%28cos%5Ctheta%20%2B%20isin%5Ctheta%29%5D%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%5C%5Cz%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20%5Csqrt%5Bn%5D%7Br%7D%20%28cos%28%5Cfrac%7B%5Ctheta%2B2nk%7D%7Bn%7D%20%29%20%2B%20isin%28%5Cfrac%7B%5Ctheta%2B2nk%7D%7Bn%7D%29%29)
r is the modulus of the complex number and
is the argument
r = √x²+y²

Given z = -9i
r = √0+(-9)²
r = √81
r = 9

The argument will be equivalent to 180-90 = 90°
The forth root of -9i will be expressed as shown according to de moivre's theorem;
![z_k^{\frac{1}{4} } = \sqrt[4]{9} (cos(\frac{90+2(4)k}{4} ) + isin(\frac{90+2(4)k}{4}))\\z_k^{\frac{1}{4} } = \sqrt[4]{9} (cos(\frac{90+8k}{4} ) + isin(\frac{90+8k}{4}))\\](https://tex.z-dn.net/?f=z_k%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%2B2%284%29k%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%2B2%284%29k%7D%7B4%7D%29%29%5C%5Cz_k%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%2B8k%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%2B8k%7D%7B4%7D%29%29%5C%5C)
The complex roots are at when k = 0, 1, 2 and 3
When k = 0;
![z_0 = \sqrt[4]{9} (cos(\frac{90}{4} ) + isin(\frac{90}{4}))\\z_0 = \sqrt[4]{9} (cos(23) + isin(23))\\\\when\ k =1\\z_1 = \sqrt[4]{9} (cos(\frac{90+8}{4} ) + isin(\frac{90+8}{4}))\\z_1 = \sqrt[4]{9} (cos(25 ) + isin(25))\\\\when\ k =2\\z_2 = \sqrt[4]{9} (cos(\frac{90+16}{4} ) + isin(\frac{90+16}{4}))\\z_2 = \sqrt[4]{9} (cos(27 ) + isin(27))\\\\when\ k =3\\z_3 = \sqrt[4]{9} (cos(\frac{90+24}{4} ) + isin(\frac{90+24}{4}))\\z_3 = \sqrt[4]{9} (cos(29 ) + isin(29))\\](https://tex.z-dn.net/?f=z_0%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%7D%7B4%7D%29%29%5C%5Cz_0%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%2823%29%20%2B%20isin%2823%29%29%5C%5C%5C%5Cwhen%5C%20k%20%3D1%5C%5Cz_1%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%2B8%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%2B8%7D%7B4%7D%29%29%5C%5Cz_1%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%2825%20%29%20%2B%20isin%2825%29%29%5C%5C%5C%5Cwhen%5C%20k%20%3D2%5C%5Cz_2%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%2B16%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%2B16%7D%7B4%7D%29%29%5C%5Cz_2%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%2827%20%29%20%2B%20isin%2827%29%29%5C%5C%5C%5Cwhen%5C%20k%20%3D3%5C%5Cz_3%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%28%5Cfrac%7B90%2B24%7D%7B4%7D%20%29%20%2B%20isin%28%5Cfrac%7B90%2B24%7D%7B4%7D%29%29%5C%5Cz_3%20%3D%20%5Csqrt%5B4%5D%7B9%7D%20%20%28cos%2829%20%29%20%2B%20isin%2829%29%29%5C%5C)
Note that all the degrees are rounded to the nearest whole number.