1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
5

Please help!!!!!!!!!!

Mathematics
1 answer:
Lady bird [3.3K]3 years ago
7 0

Answer:

\large\boxed{a=4\sqrt3}

Step-by-step explanation:

We have the triangle 30° - 60° - 90°.  In that triangle sides are in proportion

1 : √3 : 2 <em>(look at the picture).</em>

<em />

We have

a\sqrt3=12         <em>multiply both sides by √3   (use √a · √a = a)</em>

3a=12\sqrt3       <em>divide both sides by 3</em>

a=4\sqrt3

b=2a\to b=2(4\sqrt3)=8\sqrt3

You might be interested in
What is the property ??
hram777 [196]

The distributive property is being displayed here. The distributive property shows if you have a problem like 3(a+c), it can be converted into 3a+3c. It shows itself in this because it is distributing -2 to both a and b.

Answer: The distributive property is being shown here.

Hope I helped!

4 0
3 years ago
Can someone please help me
Alex787 [66]
A.30
b.60
c.90
must be 180
4 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Equation, an identity, or a contradiction.<br> 7v+42=11(3v+8)−2(13v−1)
umka2103 [35]

Answer:

48

Step-by-step explanation:

7x+42=11(3x+8)−2(13x−1)

Step 1: Simplify both sides of the equation.

7x+42=11(3x+8)−2(13x−1)

7x+42=(11)(3x)+(11)(8)+(−2)(13x)+(−2)(−1)(Distribute)

7x+42=33x+88+−26x+2

7x+42=(33x+−26x)+(88+2)(Combine Like Terms)

7x+42=7x+90

7x+42=7x+90

Step 2: Subtract 7x from both sides.

7x+42−7x=7x+90−7x

42=90

Step 3: Subtract 42 from both sides.

42−42=90−42

0=48

3 0
3 years ago
Read 2 more answers
4m+3w=72<br> will mark brainliest
marin [14]
<h2>Answer:</h2><h2>If we solve for m, the answer is: m = 18 - 3w/4</h2><h2>If we solve for w, the answer is: w = 24 - 4m/3</h2><h2 /><h2>Hope this helps!!</h2>

4 0
3 years ago
Read 2 more answers
Other questions:
  • The yearbook club had a meeting. The meeting had
    13·1 answer
  • BRAINLIESTTTT!!!! ASAP
    6·1 answer
  • Http://www.usatestprep.com/modules/gallery/files/167/16750/16750.png
    14·2 answers
  • If M is the midpoint of FG and MG = 7x-15, FG = 33, X = ?
    13·1 answer
  • Can someone please help me answer this question ASAP.
    5·1 answer
  • A die is rolled, what is the probabilty to roll a number divisable by 2
    14·2 answers
  • Solve for x, y, and z. Please show all steps.
    15·1 answer
  • What are the areas of each smaller rectangle and the large rectangle?
    15·1 answer
  • Tom bought 3 gallons of grey paint and 2 gallons of red paint. Grey paint is $24.59 per gallon and red paint is $37.99 per gallo
    6·1 answer
  • The critical points of a rational inequality arex=-4 and x = 2. Which set of points can be tested to find a complete
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!