Explanation:
so sorry
don't know but please mark me as brainliest please
Answer: A) Wavelength and frequency are inversely proportional.
Explanation:
From the wave equation;
Velocity= frequency × wavelength
If the above equation is rearranged making the frequency the subject of formula, it would give;
Frequency= velocity/ wavelength.
From the above equation we see that frequency is inversely proportional to the wavelength. This means that for every increase in wavelength there would be a decrease in frequency, and for every increase in frequency there is a reduction in wavelength.
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
The big bang theory is the most accepted theory regarding the origin of the solar system. It suggests that our star, the Sun, was first created by a cloud of<span>dust and gas.</span>
Answer:
The change in kinetic energy (KE) of the car is more in the second case.
Explanation:
Let the mass of the car = m
initial velocity of the first case, u = 22 km/h = 6.11 m/s
final velocity of the first case, v = 32 km/h = 8.89 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(8.89² - 6.11²)
= 20.85m J
initial velocity of the second case, u = 32 km/h = 8.89 m/s
final velocity of the second case, v = 42 km/h = 11.67 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(11.67² - 8.89²)
= 28.58m J
The change in kinetic energy (KE) of the car is more in the second case.