Answer:
Step-by-step explanation:
The picture is below of how to separate this into 2 different regions, which you have to because it's not continuous over the whole function. It "breaks" at x = 2. So the way to separate this is to take the integral from x = 0 to x = 2 and then add it to the integral for x = 2 to x = 3. In order to integrate each one of those "parts" of that absolute value function we have to determine the equation for each line that makes up that part.
For the integral from [0, 2], the equation of the line is -3x + 6;
For the integral from [2, 3], the equation of the line is 3x - 6.
We integrate then:
and
sorry for the odd representation; that's as good as it gets here!
Using the First Fundamental Theorem of Calculus, we get:
(6 - 0) + (-4.5 - (-6)) = 6 + 1.5 = 7.5
Answer: ∠A ≅ ∠A; reflexive property
Step-by-step explanation: found it online :)
You have to build the triangles.
They are such that:
h is the common height
x is the horizontal distance from the plane to one stone
Beta is the angle between x and the hypotenuse
Then in this triangle: tan(beta) = h / x ......(1)
1 - x is the horizontal distance from the plane to the other stone
alfa is the angle between 1 - x and h
Then, in this triangle: tan (alfa) = h / [1 -x ] ...... (2)
from (1) , x = h / tan(beta)
Substitute this value in (2)
tan(alfa) = h / { [ 1 - h / tan(beta)] } =>
{ [ 1 - h / tan(beta) ] } tan(alfa) = h
[tan(beta) - h] tan(alfa) = h*tan(beta)
tan(beta)tan(alfa) - htan(alfa) = htan(beta)
h [tan(alfa) + tan(beta) ] = tan(beta) tan (alfa)
h = tan(beta)*tan(alfa) / (t an(alfa) + tan(beta) )
Answer:
your answer would be OA
Step-by-step explanation: