Please, you have to apply the formula below:<span>Q=c∗m∗Δt</span>where Q is the energy lost, c is the specific heat of water, m is the mass of water involved, so m=3.75 *10^-1 Kg c=4,184 J/(Kg*°C) delta t=37.5 °C
Taking density of water as 1000kg/m3. Mass of water would be 0.375kg. So, heat lost would be<span>H=mCDeltaT</span>H=0.375*4184*37.5 = 58837.5J
Hydrogen is a non-polar gas with very weak intermolecular forces of attraction. Hydrogen will deviate from the ideal gas behavior at high pressure.
Remember that the number of protons in the nucleus determines an element's identity. Chemical changes do not affect the nucleus, so chemical changes cannot change one type of atom into another. The number of protons in a nucleus does change sometimes, however. The identity of the atom, therefore, changes.
The highest concentration of water would be found in the 5% solution. The concentration given above is percent of glucose, so the solution contain 5% of glucose and 95% of water. Comparing it to 10% of glucose solution which will have 10% glucose and 90% water, clearly, it is the 5% solution that has the highest amount of water in the solution. <span>Percentage
by a certain unit is the amount of that unit of a component in a mixture per 100 units of the
total mixture. </span>