Answer:
0.6743 M
Explanation:
HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O
First we <u>calculate how many NaOH moles reacted</u>, using the <em>definition of molarity</em>:
- Molarity = moles / volume
- moles = Molarity * volume
- 0.4293 M * 39.27 mL = 16.86 mmol NaOH
<em>One NaOH moles reacts with one acetic acid mole</em>, so <u>the vinegar sample contains 16.86 mmoles of acetic acid as well</u>.
Finally we <u>calculate the concentration (molarity) of acetic acid</u>:
- 16.86 mmol HC₂H₃O₂ / 25.00 mL = 0.6743 M
Explanation:
Formula to calculate osmotic pressure is as follows.
Osmotic pressure = concentration × gas constant × temperature( in K)
Temperature =
= (25 + 273) K
= 298.15 K
Osmotic pressure = 531 mm Hg or 0.698 atm (as 1 mm Hg = 0.00131)
Putting the given values into the above formula as follows.
0.698 = 
C = 0.0285
This also means that,
= 0.0285
So, moles = 0.0285 × volume (in L)
= 0.0285 × 0.100
= 
Now, let us assume that mass of
= x grams
And, mass of
= (1.00 - x)
So, moles of
=
Now, moles of
=
=
= x = 0.346
Therefore, we can conclude that amount of
present is 0.346 g and amount of
present is (1 - 0.346) g = 0.654 g.
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Reducing agents are defined as the agents which help the other substance to get reduced and itself gets oxidized. They undergo oxidation reaction.

For determination of reducing agents, we will look at the oxidation potentials of the substance. Oxidation potentials can be determined by reversing the standard reduction potentials.
For the given options:
- <u>Option a:</u>

This ion cannot be further oxidized because +1 is the most stable oxidation state of silver.
- <u>Option b:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.13 V

- <u>Option c:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.0 V

- <u>Option d:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is -0.80 V

- <u>Option e:</u>

This ion cannot be further oxidized because +2 is the most stable oxidation state of magnesium.
By looking at the standard oxidation potential of the substances, the substance having highest positive
potential will always get oxidized and will undergo oxidation reaction. Thus, considered as strong reducing agent.
From the above values, the correct answer is Option b.
#b
According to Le C ha.te llors principle of we increase concentration of reactants or products equilibrium shifts.
#c
- Rate of reaction also increases
#e
Stated in b
I believe You replace the ending of the elements name with -ide. example: magnesium flourine should should be magnesium flouride.