A diverging lens is used to permit clear vision of an object placed at infinity. The focal length of the lens is -100 cm.
<h3>What is focal length?</h3>
The focal length is half of the radius of curvature of the focal lens.
By the lens maker formula,
1/f = 1/v +1/u
where, v is the image distance and u is the object distance.
Give, the object is at infinity and the image must form at 100 cm, the the focal length will be
1/f = 1/ -100 + 1/∞
f = -100 cm
The focal length must be -100 cm for the diverging lens.
Learn more about focal length.
brainly.com/question/16188698
#SPJ1
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
In the future ? Well, there's no technological reason why it couldn't be 100%.
Answer:
The elevator must be moving upward.
Explanation:
During the motion of an elevator, the weight of the person deviates from his or her actual weight. This temporary weight during the motion is referred to as "Apparent Weight". So, when the elevator is moving downward, the apparent weight of the person becomes less than his or her actual weight.
On the other hand, for the upward motion of the elevator, the apparent weight of the person becomes more than the actual weight of that person.
Since the apparent weight (645 N) of the student, in this case, is greater than the actual weight (615 N) of the student.
<u>Therefore, the elevator must be moving upward.</u>