Answer:
The gravitational force between them is
.
Explanation:
Given that,
Distance = 1.50 m
Mass of one student = 70.0 kg
Mass of other student = 52.0 kg
We need to calculate the gravitational force
Using formula of gravitational force

Where, m₁ = mass of one student
m₂ = mass of other studen
r = distance between them
Put the value into the formula


Hence, The gravitational force between them is
.
Answer: forces acting on an object being thrown into the air is gravity and possibly air resistance
Explanation:
In component form, the displacement vectors become
• 350 m [S] ==> (0, -350) m
• 400 m [E 20° N] ==> (400 cos(20°), 400 sin(20°)) m
(which I interpret to mean 20° north of east]
• 550 m [N 10° W] ==> (550 cos(100°), 550 sin(100°)) m
Then the student's total displacement is the sum of these:
(0 + 400 cos(20°) + 550 cos(100°), -350 + 400 sin(20°) + 550 sin(100°)) m
≈ (280.371, 328.452) m
which leaves the student a distance of about 431.8 m from their starting point in a direction of around arctan(328.452/280.371) ≈ 50° from the horizontal, i.e. approximately 431.8 m [E 50° N].
Diameter = 0.170 meter
Circumference = 0.170 π meters
530 rpm = 530 circumferences / minute
= (530 x 0.170 π meters) / minute
= 283.06 meter.minute
= 4.72 meters/second
The splitting of the atomic nucleus into parts