It will be unstable system because it will not be able to recover from the disturbance
Answer:
a) E = -4 10² N / C
, b) x = 0.093 m, c) a = 10.31 m / s², θ=-71.9⁰
Explanation:
For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball
X axis
-
= m a
Axis y
- W = 0
Initially the system is in equilibrium, so zero acceleration
Fe =
T_{y} = W
Let us search with trigonometry the components of the tendency
cos θ = T_{y} / T
sin θ =
/ T
T_{y} = cos θ
= T sin θ
We replace
q E = T sin θ
mg = T cosθ
a) the electric force is
= q E
E =
/ q
E = -0.032 / 80 10⁻⁶
E = -4 10² N / C
b) the distance to this point can be found by dividing the two equations
q E / mg = tan θ
θ = tan⁻¹ qE / mg
Let's calculate
θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)
θ = tan⁻¹ 0.3265
θ = 18
⁰
sin 18 = x/0.30
x =0.30 sin 18
x = 0.093 m
c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations
X axis
= m aₓ
aₓ = q E / m
aₓ = 80 10⁻⁶ 4 10² / 0.01
aₓ = 3.2 m / s²
Axis y
W = m
a_{y} = g
a_{y} = 9.8 m/s²
The total acceleration is can be found using Pythagoras' theorem
a = √ aₓ² + a_{y}²
a = √ 3.2² + 9.8²
a = 10.31 m / s²
The Angle meet him with trigonometry
tan θ = a_{y} / aₓ
θ = tan⁻¹ a_{y} / aₓ
θ = tan⁻¹ (-9.8) / 3.2
θ = -71.9⁰
Movement is two-dimensional type with acceleration in both axes
Answer:
Explanation:
A proton of charge
q=+1.609×10^-19C
Orbit a radius of 12cm
r=0.12m
Magnetic Field of 0.31T
Angle between velocity and field is 90°
a. Because the magnetic force F supplies the centripetal force Fc.
The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength B is given by
F = qvB sin θ
And the centripetal force is given as
Fc=mv²/r
Where m is mass of proton
m=1.673×10^-27kg
Then, F=Fc
qvB sin θ=mv²/r
qBSin90=mv/r
rqB=mv
Then, v=rqB/m
v=0.12×1.609×10^-19×0.31/1.673×10^-23
v=3577692.78m/s
v=3.58×10^6m/s
b. Since,
F=qVBSin90
F=1.609×10^-19×3.58×10^6×0.31
F=1.785×10^-13 N.
Answer: The bottom of the ladder is moving at 3.464ft/sec
Explanation:
The question defines a right angle triangle. Therefore using pythagorean
h^2 + l^2 = 10^2 = 100 ...eq1
dh/dt = -2ft/sec
dl/ dt = ?
Taking derivatives of time in eq 1 on both sides
2hdh/dt + 2ldl/dt = 0 ....eq2
Putting l = 5ft in eq2
h^ + 5^2 = 100
h^2 = 25 = 100
h Sqrt(75)
h = 8.66 ft
Put h = 8.66ft in eq2
2 × 8.66 × (-2) + 2 ×5 dl/dt
dl/dt = 17.32 / 5
dl/dt = 3.464ft/sec
Answer:
Boyle's Law

Explanation:
Given that:
<u><em>initially:</em></u>
pressure of gas, 
volume of gas, 
<em><u>finally:</u></em>
pressure of gas, 
volume of gas, 
<u>To solve for final volume</u>
<em>According to Avogadro’s law the volume of an ideal gas is directly proportional to the no. of moles of the gas under a constant temperature and pressure.</em>
<em>According to the Charles' law, at constant pressure the volume of a given mass of an ideal gas is directly proportional to its temperature.</em>
But here we have a change in the pressure of the Gas so we cannot apply Avogadro’s law and Charles' law.
Here nothing is said about the temperature, so we consider the Boyle's Law which states that <em>at constant temperature the volume of a given mass of an ideal gas is inversely proportional to its pressure.</em>
Mathematically:


