I solved this problem for you. Your answer is 6/11
3/4 as you are paying for what is not discounted
Answer:
0
Step-by-step explanation:
Slope = rise/run = 0/9 = 0
The question is incomplete. The complete question is :
Let X be a random variable with probability mass function
P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6
(a) Find a function g such that E[g(X)]=1/3 ln(2) + 1/6 ln(5). You answer should give at least the values g(k) for all possible values of k of X, but you can also specify g on a larger set if possible.
(b) Let t be some real number. Find a function g such that E[g(X)] =1/2 e^t + 2/3 e^(2t) + 5/6 e^(5t)
Solution :
Given :

a). We know :
![$E[g(x)] = \sum g(x)p(x)$](https://tex.z-dn.net/?f=%24E%5Bg%28x%29%5D%20%3D%20%5Csum%20g%28x%29p%28x%29%24)
So, 

Therefore comparing both the sides,


Also, 
b).
We known that ![$E[g(x)] = \sum g(x)p(x)$](https://tex.z-dn.net/?f=%24E%5Bg%28x%29%5D%20%3D%20%5Csum%20g%28x%29p%28x%29%24)
∴ 

Therefore on comparing, we get

∴ 
Answer:
-6r + 6
Step-by-step explanation:
8-(6r+2)
Distribute the negative sign to the brackets.
8-6r-2
Rearrange.
-6r + 8 - 2
Add or subtract like terms.
-6r + 6