1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
13

A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The

pump is considered isentropic and the turbine isentropic efficiency is 85%. If the net power output is 100 MW calculate the thermal efficiency of the plant and the mass flow rate of steam
Engineering
1 answer:
Ray Of Light [21]3 years ago
7 0

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

You might be interested in
Affordability is most concerned with:
leva [86]

Answer:

feasibility study

Explanation:

7 0
3 years ago
When designing a car that runs on wind or Air car . can you tell me the details for the following points Compressed Air Engine:
BabaBlast [244]

Answer:

a)

The crack and connecting rod is used in the design of car.This mechanism is known as slider -crank mechanism.

Components:

1.Inlet tube

2. Wheel

3. Exhaust

4. Engine

5.Air tank

6.Pressure gauge

7.Stand

8. Gate valve

b)

The efficiency of air engine is less as compare to efficiency of electric engine and this is not ecofriendly because it produce green house gases.These gases affect the environment.

c)

it can run around 722 km when it is full charge.

                                                                                                                                                     

5 0
3 years ago
Construction support involves mostly what kind of work?
Paraphin [41]

Answer:

Outdoors

Explanation:

Construction workers perform outdoors.

6 0
2 years ago
Infinitivo de vivia kkk xd
blagie [28]

Answer:

pls put a question not random letters

Explanation:

8 0
3 years ago
Technician A says that rear-wheel drive vehicles usually get better traction than front-wheel drive vehicles. Technician B says
Alex Ar [27]
Both a and b

Disclaimer! (90% sure)
6 0
3 years ago
Other questions:
  • What is the name of the model/shape below?
    5·2 answers
  • A evolução da malha rodoviária do Brasil é um marco notável
    9·1 answer
  • Determine the resultant normal force across the cross section at point B. Express your answer to three significant figures and i
    6·1 answer
  • Generally natural shape of stone is in shaped as (a)angular (b)irregular (c)cubical cone shape (d)regular
    10·2 answers
  • According to OSHA standards, the air in the building that John works in is unsafe. The type of regulation that OSHA engages in i
    8·2 answers
  • A 0.50 m3 drum was filled with 0.49 m3 of liquid water at 25oC and the remaining volume was water vapor without any air. The dru
    15·1 answer
  • Digital leaders are people who __ others down a particular path.
    13·2 answers
  • Problem 89:A given load is driven by a 480 V six-pole 150 hp three-phase synchronous motor with the following load and motor dat
    11·1 answer
  • I NEED HELP ASAP WILL AWARD BRAINLIEST
    8·2 answers
  • Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on ske
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!