1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
13

A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The

pump is considered isentropic and the turbine isentropic efficiency is 85%. If the net power output is 100 MW calculate the thermal efficiency of the plant and the mass flow rate of steam
Engineering
1 answer:
Ray Of Light [21]3 years ago
7 0

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

You might be interested in
g A steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. Determine the longitudinal and hoop stress
zvonat [6]

Answer:

a) \mathbf{\sigma _ 1 = 4800 psi}

     \mathbf{ \sigma _2 = 0}

b)\mathbf{\sigma _ 1 = 6000 psi}

  \mathbf{ \sigma _2 = 3000 psi}

Explanation:

Given that:

diameter d = 12 in

thickness t = 0.25 in

the radius = d/2 = 12 / 2 = 6 in

r/t = 6/0.25 = 24

24 > 10

Using the  thin wall cylinder formula;

The valve A is opened and the flowing water has a pressure P of 200 psi.

So;

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = 0

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{200(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 4800 psi}

b)The valve A is closed and the water pressure P is 250 psi.

where P = 250 psi

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = \frac{Pd}{4t}

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{250*(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 6000 psi}

\sigma _2 = \frac{Pd}{4t} \\ \\  \sigma _2 = \frac{250(12)}{4(0.25)}

\mathbf{ \sigma _2 = 3000 psi}

The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below

8 0
3 years ago
A general contractor has received plans for a new high-rise hotel in an urban area. The hotel will be 12 stories tall and will h
liberstina [14]

Answer:

Ano klassing tanong yn?

Explanation:

Ang taas namn yn? Paki linaw po para matulungan po kita.!!

8 0
3 years ago
True or false. Part of the mission of the NTSB is to determine the probable cause of an accident
eimsori [14]

uniform

welcome 2 Ghana African state western region

6 0
3 years ago
a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419
dusya [7]

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

<u>E = 0 N/C</u>

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

<u>E = 0 N/C</u>

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

<u>E = 7.78 x10^5 N/C</u>

4 0
3 years ago
Breh/bro <br><br>what is this, finally I can learn programming​
LenKa [72]

Answer:

It's an intoduction to hacking and systematic programming.

Explanation:

Yes, you might be able to grasp a few things from it, but it also may be a way hackers could hack you, by luring you to click it.

8 0
3 years ago
Other questions:
  • The function below takes a single parameter, a list of numbers called number_list. Complete the function to return a string of t
    14·1 answer
  • Unwanted resistance is being discussed.
    12·1 answer
  • Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase
    8·1 answer
  • Wiring harnesses run
    12·1 answer
  • You are designing a geartrain with three spur gears: one input gear, one idler gear,and one output gear. The diametral pitch for
    13·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • Fixed rate mortgage offer:
    9·2 answers
  • Your sprayer has a 60-foot wide boom with 36 nozzles along this 60-foot length. Your spray speed is 4.5 miles per hour and you w
    15·1 answer
  • Explain your own understanding about the relevant connections between the four subsystems of Earth through the use of a creative
    9·1 answer
  • 11. What are restrictions when building or completing a challenge?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!