1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
6

An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated va

por enters the compressor at 1.25 bar, and saturated liquid exits the condenser at 5 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the magnitude of the compressor power input required, in kW (report as a positive number).

Engineering
1 answer:
Ksju [112]3 years ago
3 0

Explanation:

Note: Refer the diagram below

Obtaining data from property tables

State 1:

\left.\begin{array}{l}P_{1}=1.25 \text { bar } \\\text { Sat - vapour }\end{array}\right\} \begin{array}{l}h_{1}=234.45 \mathrm{kJ} / \mathrm{kg} \\S_{1}=0.9346 \mathrm{kJ} / \mathrm{kgk}\end{array}

State 2:

\left.\begin{array}{l}P_{2}=5 \text { bor } \\S_{2}=S_{1}\end{array}\right\} \quad h_{2}=262.78 \mathrm{kJ} / \mathrm{kg}

State 3:

\left.\begin{array}{l}P_{3}=5 \text { bar } \\\text { Sat }-4 q\end{array}\right\} h_{3}=71-33 \mathrm{kJ} / \mathrm{kg}

State 4:

Throttling process  h_{4}=h_{3}=71.33 \mathrm{kJ} / \mathrm{kg}

(a)

Magnitude of compressor power input

\dot{w}_{c}=\dot{m}\left(h_{2}-h_{1}\right)=\left(8 \cdot 5 \frac{\mathrm{kg}}{\min } \times \frac{1 \mathrm{min}}{\csc }\right)(262.78-234 \cdot 45)\frac{kj}{kg}

w_{c}=4 \cdot 013 \mathrm{kw}

(b)

Refrigerator capacity

Q_{i n}=\dot{m}\left(h_{1}-h_{4}\right)=\left(\frac{g \cdot s}{60} k_{0} / s\right) \times(234 \cdot 45-71 \cdot 33) \frac{k J}{k_{8}}

Q_{i n}=23 \cdot 108 \mathrm{kW}\\1 ton of retregiration =3.51 k \omega

\ Q_{in} =6 \cdot 583 \text { tons }

(c)

Cop:

\beta=\frac{\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}=\frac{Q_{i n}}{\omega_{c}}=\frac{23 \cdot 108}{4 \cdot 013}

\beta=5 \cdot 758

You might be interested in
What is the pressure at the bottom of a 25 ft volume of hydraulic fluid with a weight density of 55 lb/ft3 a. 114.6 psi b. 1375p
Assoli18 [71]

Answer:

d) 9.55 psi

Explanation:

pressure at the bottom is =ρgh

weight density is ρg=55 lb/ft³

h=25ft

pressure at the bottom is =55\times 25

                                  =1375psf

1 ft = 12 inch

pressure at bottom =\frac{1375}{12^2}

                                = 9.55 psi

so, answer will be option (d) which is 9.55 psi

3 0
3 years ago
2) The switch in the circuit below has been closed a long time. At t=0, it is opened.
saul85 [17]

Answer:

  il(t) = e^(-100t)

Explanation:

The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.

The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...

  il(t) = e^(-t/.01)

  il(t) = e^(-100t) . . . amperes

8 0
3 years ago
What does the word “robot” mean? A.Clone B. Athlete C. Servant D. Actor
hram777 [196]

Answer:

a. clone

Explanation:

4 0
3 years ago
A rectangular workpiece has the following original dimensions: 2a=100mm, h=25mm, and width=20mm. The metal has a strengh coeffic
Elena-2011 [213]

Answer:

See attachment for detailed answer.

Explanation:

Download pdf
4 0
3 years ago
Oil of density 780 kg/m3 is flowing at a velocity of 20 m/s at the atmospheric pressure in a horizontal cylindrical tube elevate
Soloha48 [4]

Answer:

radius = 0.045 m

Explanation:

Given data:

density of oil = 780 kg/m^3

velocity = 20 m/s

height = 25 m

Total energy is = 57.5 kW

we have now

E = kinetic energy+ potential energy +  flow work

E = \dot m ( \frac{v^2}{2] +  zg + p\nu)

E = \dot m( \frac{v^2}{2] +  zg + p_{atm} \frac{1}{\rho})

57.5 \times 10^3 = \dot m ( \frac{20^2}{2} + 25 \times 9.81 + 101325 \frac{1}{780})

solving for flow rate

\dot m = 99.977we know that [tex]\dot m  = \rho AV

\dot m  = 780 \frac{\pi}{4} D^2\times 16

solving for d

99.97 = 780 \times \frac{\pi}{4} D^2\times 16

d = 0.090 m

so radius = 0.045 m

3 0
4 years ago
Other questions:
  • You want to determine whether the race of the defendant has an impact on jury verdicts. You assign participants to watch a trial
    9·1 answer
  • The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
    12·1 answer
  • You are considering building a residential wind power system to produce 6,000 kWh of electricity each year. The installed cost o
    15·1 answer
  • Question 64 (1 point)
    9·1 answer
  • What is a business cycle? a period of economic growth followed by economic contraction the amount of time it takes a business to
    13·2 answers
  • Different Gauss quadrature formulae predict different values for the same integral a. True b. False
    11·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • A 35kg block of mass is subjected to forces F1=100N and F2=75N at agive angle thetha= 20° and 35° respectively.find the distance
    11·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • What is the law of physics<br><br><br> 10 points if you tell me the answer and your name
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!