Answer:
Option C = internal energy stays the same.
Explanation:
The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.
So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.
Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.
The amount of heat,q = Work,w.
In the concept of free expansion the only thing that changes is the volume.
Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
Answer: you can watch a video on how to solve this question on you tube
Answer:
<h2>False </h2>
Explanation:
The noun form of organize is just adding letter r
Answer: 8.33333333 or 6.1989778
Explanation: