Answer:

Explanation:
Given:
- mass of the object on a horizontal surface,

- coefficient of static friction,

- coefficient of kinetic friction,

- horizontal force on the object,

<u>Now the value of limiting frictional force offered by the contact surface tending to have a relative motion under the effect of force:</u>

where:
normal force of reaction acting on the body= weight of the body


As we know that the frictional force acting on the body is always in the opposite direction:
So, the frictional force will not be at its maximum and will be equal in magnitude to the applied external force and hence the body will not move.
so, the frictional force will be:

Answer:
1807.56 kJ
Explanation:
Parameters given:
Current, I = 8.9A
Time, t = 4.7hrs = 4.7 * 3600 = 16920 secs
Voltage, V = 12V
Electrical energy is given as:
E = I*V*t
Where I = Current
V = Voltage/Potential differenxe
t = time in seconds.
E = 8.9 * 12 * 16920
E = 1807056 J = 1807.056 kJ
Answer:
The answer to your question is 5.4 cm
Explanation:
This problem refers to calculate the change in length in one dimension due to a change in temperature.
Data
α = 12 x 10⁻⁶
Lo = 150 meters
ΔT = 30 °C
Formula
ΔL/Lo = αΔT
solve for ΔL
ΔL = αLoΔT
Substitution
ΔL = (12 x 10⁻⁶)(150)(30)
Simplification
ΔL = 0054 m = 5.4 cm
<u>Answer:</u>
First, the thermometer is dipped into boiling water, and the mercury inside the thermometer rises to a high level, called the boiling point. This level is then marked as 100°C. The thermometer is then dipped into melting ice, which causes the mercury level to fall to a point called the ice point. This point is then marked as 0°C. The length of the thermometer from the 0°C mark to the 100°C point is then divided into 100 equal sections, and the rest of the levels are marked accordingly.

Actually Welcome to the Concept of the Methods of Separation.
Evaporation and Decantation are the process which can be easily used to remove the Soluble Impurities.