Answer: it’s A and B
Explanation: everyone else on this post was giving you the wrong answer.
Answer:
The answer is below
Explanation:
Given that:
The area of the plates is 6 m by 0.030 m, Therefore the area = 6 m × 0.03 m = 0.18 m²
the relative permittivity of dielectric (εr) is 7.0
Permittivity of free space (εo) = 8.854 × 10^(-12)
capacitance of 100uF
potential difference (V) of 12V
d = separation between plate
The capacitance (C) of a capacitor is given by:

The electric field between plates is given as:
E = V /d

Answer:
Explanation:
Given that,
5J work is done by stretching a spring
e = 19cm = 0.19m
Assuming the spring is ideal, then we can apply Hooke's law
F = kx
To calculate k, we can apply the Workdone by a spring formula
W=∫F.dx
Since F=kx
W = ∫kx dx from x = 0 to x = 0.19
W = ½kx² from x = 0 to x = 0.19
W = ½k (0.19²-0²)
5 = ½k(0.0361-0)
5×2 = 0.0361k
Then, k = 10/0.0361
k = 277.008 N/m
The spring constant is 277.008N/m
Then, applying Hooke's law to find the applied force
F = kx
F = 277.008 × 0.19
F = 52.63 N
The applied force is 52.63N
Explanation:
Análisis estadístico de resultados de ensayos de pavimentos asfálticos según la ... T38 Caracterizacin dinámica de suelos granulares ... Se retira y se da vuelta la probeta
Answer:



Explanation:
g = Acceleration due to gravity = 
= Angle of slope = 
v = Velocity of child at the bottom of the slide
= Coefficient of kinetic friction
= Coefficient of static friction
h = Height of slope = 1.8 m
The energy balance of the system is given by

The speed of the child at the bottom of the slide is 
Length of the slide is given by


The force energy balance of the system is given by

The coefficient of kinetic friction is
.
For static friction

So, the minimum possible value for the coefficient of static friction is
.