The gravitation force is quartered when two objects' masses are halved without changing their distance.
Gravitational law states that the force of attraction and repulsion between two objects is directly proportional to the product of their masses and inversely proportional to the square of their distance apart.
F=(KM1 M2)/r^2
K= Gravitation force constant
M1M2 = masses of the object
r = distance between objects
When M1 and M2 are halved, it becomes M1/2 and M2/2
F=(K M1/2 x M2/2)/r^2
F=(K (M1 x M2)/4)/r^2
F=(KM1 x M2)/(4r^2 )
Recall
F=(KM1 x M2)/r^2
Therefore
F=F/4
Learn more about gravitational force here:
brainly.com/question/25408095
#SPJ4
Explanation:
option D ) is correct the speaker explain a difficult decision he had to make
hi everyone comment
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15