Answer:
3.) 195
Explanation:
Because platinum is 195.079 amu (its on the periodic table)
Answer: 2 lone pairs, square planar
Explanation:
Using the VSEPR ( Valence Shell Electron Pair Repulsion)Theory
To calculate the number of lone pairs electron can be done using the formula;
Number of electrons = ½ (V+N-C+A)
V mean valency of the central atom
N means number of monovalent bonding atoms
C means charge on cation
A means charges on anion
Therefore, to calculate the number of lone pair electron C=A=0;
Number of electrons = ½ (8+4) = 12/2 = 6
Number of bonding pair = 4
Number of lone pairs of electron = 6-4 = 2
The hybridrization of the compound is sp3d2 because the number of electrons around the central atom is 6.
The geometry of the compound is square planar and this is because of the repulsion between the bonding pair of electrons and lone pair of electrons which causes the lone pair of electrons to lie in a perpendicular plane in order to acquire stability.
Answer:
C. The lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, all of which have the same spin, in degenerate orbitals.
Explanation:
The Hund's rule is used to place the electrons in the orbitals is it states that:
1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied;
2. All of the electrons in singly occupied orbitals have the same spin.
So, the electrons first seek to fill the orbitals with the same energy (degenerate orbitals) before paring with electrons in a half-filled orbital. Orbitals doubly occupied have greater energy, so the lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, and for the second statement, they have the same spin.
The other alternatives are correct, but they're not observed by the Hund's rule.