The first law states that the total increase in the energy of a system is equal to the increase in thermal energy, meaning that heat is a form of energy and is therefore subject to the the principle of conservation
Great question, but I believe you are mixing up atomic number with mass number. Assuming you are, 12.011 amu is the average mass of a carbon atom. For carbon, it can come in three forms: carbon-12, carbon-13, carbon-14. The number following carbon is the mass number of that particular carbon "isotope". The reason the average is so close to 12 is because carbon-12 is by far the most common, so the average should be (and is) very close to 12. Therefore, 12.011 is a weighted average of all carbon molecules, and carbon-14 is a particular carbon molecule that weighs 14 amu.
Part A
75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF
This combination will form a buffer.
Explanation
Here, weak acid HF and its conjugate base F- is available in the solution
Part B
150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl
This combination cannot form a buffer.
Explanation
Here, moles of HF = 0.15 x 0.1 = 0.015 moles
Moles of HCl = 0.135 x 0.175 = 0.023
Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution
Part C
165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH
This combination will form a buffer.
Explanation
Moles of HF = 0.165 x 0.1 = 0.0165 moles
Moles of KOH = 0.135 x 0.05 = 0.00675 moles
Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer
Part D
125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl
This combination will form a buffer
Explanation
Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer
Part E
105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl
This combination will form a buffer
Explanation
Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles
Moles of HCl = 0.095 x 0.1 = 0.0095 moles
Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer
Answer:
The products in this equation are CI2
Explanation:
The reasoning as to why the CI2 is considered the products is because it is on the right side of the plus sign, and on the left side is called reactants.
It would be 430 B.C. 400 B.C. 335 B.C.
I hope this helps ;)