Answer:
Please see the attached picture for the complete answer.
Explanation:
If the moon was hit by an asteroid there would be a crater mark and possible movement.
Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg
In our Solar System, Jupiter is the largest planet we have. it has the surface area of 23.71 billion mi^2. it beats all the other planets in both mass and volume.
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San