Answer:
Explanation:
For destructive interference in thin films , the condition is
2μ t =( 2n+1)λ/2
where μ is refractive index of thin layer , t is thickness of layer and λ is wave length of light used. In this case for second order thickness n = 1
μ = 1.43 and λ = 510 nm
2μ t = ( 2n+1)λ/2
t =( 2n+1)λ/4μ
= 3 x 510 nm / 4x 1.43
= 267.48 nm
To solve the problem it is necessary to apply the concepts related to heat flow,
The heat flux can be defined as

Where,
k = Thermal conductivity
A = Area of cross-sectional area
d = Length of the rod
Temperature difference between the ends of the rod
Thermal conductivity of copper rod
Area of cross section of rod
Temperature difference
length of rod
Replacing then,



From the definition of heat flow we know that this is also equivalent

Where,
Mass per second
Latent heat of fusion of ice
Re-arrange to find 





Therefore the mass of ice per second that melts is 0.032g
Answer:
a) For P: 
For Q: 
b) For P:

for Q:

c) As the distance from the axis increases then speed increases too.
Explanation:
a) Assuming constant angular acceleration we can find the angular speed of the wheel dividing the angular displacement θ between time of rotation:

One rotation is 360 degrees or 2π radians, so θ=2π

Angular acceleration is at every point on the wheel, but speed (tangential speed) is different and depends on the position (R) respect the rotation axis, the equation that relates angular speed and speed is:

for P:

for Q:

b) Centripetal acceleration is:

for P:

for Q:

c) As seen on a) speed and distance from axis is
because ω is constant the if R increases then v increases too.
Answer:
<h2>
<em>6,142mm²</em></h2>
Explanation:
Given the dimension of a paper measured by a ruler as 7.4 cm wide and 8.3 cm long, the area of the paper is expressed using the area for calculating the area of a rectangle as shown;
Area of the piece of paper = Length * Width
Given length = 7.4cm
Length = 74mm (Since 10mm = 1cm)
Width = 8.3cm
Width (in mm) = 83mm
We converted to mm since the ruler used to measure has a division of 1mm.
Substituting the given values into the formula, we will have:
Area of the piece of paper = 74mm * 83mm
Area of the piece of paper = 6,142mm²
<em>Hence, the area of the piece of paper is 6,142mm²</em>