4.5m/s you count the number between 6 and 14 and get 9 do 9 divided by 2 and you get 4.5 m/s increase. hope this helps.
I think that by "Classical physics" is meant low speed things. By low speed, I think is meant speed far below very roughly half the speed of light, so that Relativistic, special or general, effects can be ignored. Or at least it is hoped that they can be ignored.
Fire extinguishers and rockets get propelled by forcing out large amounts of material (gases under very high pressure) through a nozzle, and the RECOIL from that propels something forward. So, if the action is the ejection of material, the reaction (recoil) is the ejector moving along the same line in the other direction. And that's an example of Newton's third law.
Given a propulsion system, the magnitude of the force recoiling on the ejector will change the momentum of the ejector, often written as the equation F=ma where F is the force, m is the mass being accelerated, and a being the acceleration.
Just as something will stay still until it is moved - inertia - so once set in uniform motion in a straight line, the thing will continue in that motion, theoretically for ever or until something alters its momentum. Newton's first law is to the effect of "every body continues in a state of rest or uniform motion in a straight line unless acted on by a resultant external force". Which, I think, is where the concept of inertia stems from.
I think that the above mostly tcuches on the 3 laws.Any more help needed, please ask.
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1