1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
4 years ago
13

What initially unknown quantity, together with the wavelength, is sufficient to calculate the stopping potential for 400 nmnm li

ght? View Available Hint(s) Hint 1. Equation for stopping potentialopened hint Recall that the equation for the stopping potential is eV0=hf−ϕeV0=hf−ϕ.
Physics
1 answer:
kondaur [170]4 years ago
3 0

Answer:

The initially known quantity, together with the wavelength, that is sufficient to calculate the stopping potential for electrons from the surface of a metal is called the WORK FUNCTION.

Explanation:

The stopping potential is defined as the potential that is required to stop electrons from being ejected from the surface of a metal when light with energy greater than the metal's work function/work potential is incident on the metal.

Given that light is known to be made up of photons, which carry energy in packets according to the frequencies of the light.

The photoelectric phenomenon explains that when light of a certain frequency that corresponds to an energy level that is higher than a metal's work function is incident on a metal, it will lead to electrons being ejected from the surface of the metal. The energy of the ejected electrons is then proportional to the difference between the energy level of the photons and the metal's work function.

Basically, it is the excess energy after overcoming the work function that rejects the electrons.

So, to prevent this excess energy from ejecting electrons from a metal's surface, an energy thay matches this excess must be in place to stop electrons from coming out. This energy/potential required to stop the ejection of electrons, is called the stopping potential.

The stopping potential is given as

eV₀ = hf - ϕ

The stopping potential (eV₀) them depends on the hf and the ϕ.

hf is the energy of the photons, where h is Planck's constant and f is the photons' frequency which is further given as

f = (c/λ)

c = speed of light (speed of the photons)

λ = wavelength of the photons.

The other quantity, ϕ, is the metal's work function; the amount of energy needed to be overcome by the photons before ejection of electrons is possible. It is the minimum energy that the light photoms must possess to even stand a chance of being able to eject electrons from a metal's surface.

So, the stopping potential is the difference between the energy of the photons (obtained using the photons' frequency, wavelength and/or speed) and the metal's work function.

Hope this Helps!!!!

You might be interested in
Calculate the speed of a proton after it accelerates from rest through a potential difference of 350 V.
AVprozaik [17]

The speed of a proton after it accelerates from rest through a potential difference of 350 V is 25.86 \times 10^4 ~m/s.

Initial velocity of the proton u = 0

Given potential difference \Delta V = 350V

let's assume that the speed of the proton is v,

Since the proton is accelerating through a potential difference, proton's potential energy will change with time. The potential energy of a particle of charge q when accelerated with a potential difference \Delta V is,

    U = q \Delta V

Due to Work-Energy Theorem and Conservation of Energy - <em>If there is no non-conservative force acting on a particle then loss in Potential energy  P.E must be equal to gain in Kinetic Energy K.E</em> i.e

\Delta K = \Delta V

If the initial and final velocity of the proton is u and v respectively then,

change in Kinetic Energy  \implies  \Delta K = \frac{1}{2}mv^2 -\frac{1}{2}mu^2 = \frac{1}{2}mv^2 - 0

change in Potential Energy \implies \Delta U = q\Delta V

from conservation of energy,

             v= \sqrt{\frac{2q\Delta V}{m}}

so,         v = \sqrt{\frac{2\times 350 \times 1.6\times 10^{-19}}{1.67 \times 10^{-27}}

                = 25.86 \times 10^4 ~m/s

To read more about the conservation of energy, please go to brainly.com/question/14668053

7 0
2 years ago
What are two ways in which the suns energy can be captured and used?
My name is Ann [436]

The oldest way ... the way we've been using as long as we've been
walking on the Earth ... has been to use plants.  Plants sit out in the
sun all day, capturing its energy and using it to make chemical compounds. 
Then we come along, cut the plants down, and eat them.  Our bodies
rip the chemical compounds apart and suck the solar energy out of them,
and then we use the energy to walk around, sing, and play video games.  

Another way to capture the sun's energy is to build a dam across a creek
or a river, so that the water can't flow past it.  You see, it was the sun's
energy that evaporated the water from the ocean and lifted it high into
the sky, giving it a lot of potential energy.  The rain falls on high ground,
up in the mountains, so the water still has most of that potential energy
as it drizzles down the river to the ocean.  If we catch it on its way, we
can use some of that potential energy to turn wheels, grind our grain,
turn our hydroelectric turbines to get electrical energy ... all kinds of jobs. 

A modern, recent new way to capture some of the sun's energy is to use
photovoltaic cells.  Those are the flat blue things that you see on roofs
everywhere.  When the sun shines on them, they convert some of its
energy into electrical energy.  We use some of what they produce, and
we store the rest in giant batteries, to use when the sun is not there.
 
7 0
4 years ago
Read 2 more answers
in the derivation of the time period of a pendulum in electric field when considering the fbd of bob to find the g effective why
Neko [114]

Answer:

we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.

The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.

that's what I know so far

8 0
3 years ago
What does the column that an element is in tell you?​
Mumz [18]

Answer:

The column number tells us the amount of valence electron the element has

8 0
3 years ago
What is the mass of a ball that has 29j of potential energy and is lifted 2.0m?​
Salsk061 [2.6K]

Answer:

1.48kg

Explanation:

Here,

potential energy (P.E) = 29j

height (h) = 2m

acceleration due to gravity(g) =

9.8m {s}^{ - 2}

mass(m) = ?

we know,

P.E = mgh

or, 29 = m×9.8×2

or, 29/19.6 = m

or,m = 1.48kg

6 0
2 years ago
Other questions:
  • North Africa is famous for its hand-woven carpets.<br><br> A-true <br><br> B-false
    15·1 answer
  • A person riding a Ferris wheel moves through positions at the top, the bottom, and midheight. In the following questions, you wi
    11·1 answer
  • Two solid spheres of radius R made of the same type of steel are placed in contact. The magnitude of the gravitational force the
    8·1 answer
  • Collisions between atoms are often elastic, but sometimes inelastic collisions occur, and the lost kinetic energy can become int
    7·1 answer
  • ___________is the rate at which electric charges move through a conductor. *
    10·1 answer
  • 3. Una cuerda de guitarra tiene 60 cm de longitud y una masa de 0.05 kg de masa. Si se tensiona mediante una fuerza de 20 N. La
    12·1 answer
  • Can someone please help me ?
    14·1 answer
  • One newton force is the force needed to cause a
    15·1 answer
  • Which refers to the ratio of output work to input work of a machine expressed as a percent?
    15·2 answers
  • When the leveling bulb is higher than the water level, the pressure in the system is greater than atmospheric pressure.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!