Answer: .7(b)
Step-by-step explanation:
.7(b)
Answer:
8.2+/-0.25
= ( 7.95, 8.45) years
the 95% confidence interval (a,b) = (7.95, 8.45) years
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 8.2 years
Standard deviation r = 1.1 years
Number of samples n = 75
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
8.2+/-1.96(1.1/√75)
8.2+/-1.96(0.127017059221)
8.2+/-0.248953436074
8.2+/-0.25
= ( 7.95, 8.45)
Therefore the 95% confidence interval (a,b) = (7.95, 8.45) years
Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identity
• 1 + cot²x = csc²x
Consider the left side
x -
x
Factorise as a difference of squares
= (csc²x - cot²x)(csc²x + cot²x)
= (1 + cot²x - cot²x)(csc²x + cot²x)
= csc²x + cot²x
= csc²x + csc²x - 1
= 2csc²x - 1 = right side ⇒ verified
There are two pints in a quart
so 3 times 2 equals 6
3 qt = 6 pt
You're looking for the largest number <em>x</em> such that
<em>x</em> ≡ 1 (mod 451)
<em>x</em> ≡ 4 (mod 328)
<em>x</em> ≡ 1 (mod 673)
Recall that
<em>x</em> ≡ <em>a</em> (mod <em>m</em>)
<em>x</em> ≡ <em>b</em> (mod <em>n</em>)
is solvable only when <em>a</em> ≡ <em>b</em> (mod gcd(<em>m</em>, <em>n</em>)). But this is not the case here; with <em>m</em> = 451 and <em>n</em> = 328, we have gcd(<em>m</em>, <em>n</em>) = 41, and clearly
1 ≡ 4 (mod 41)
is not true.
So there is no such number.