1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
13

(a) (i) Find the gradient of f. (ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rat

e is f decreasing? (b) (i) Find the gradient of F. (ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.
Physics
1 answer:
vitfil [10]3 years ago
8 0

Question:

Problem 14. Let f(x, y) = (x^2)y*(e^(x−1)) + 2xy^2 and F(x, y, z) = x^2 + 3yz + 4xy.

(a) (i) Find the gradient of f.

(ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rate is f decreasing?

(b) (i) Find the gradient of F.

(ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.

Answer:

The answers to the question are

(a) (i)  the gradient of f =  ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) The direction in which f decreases most rapidly at the point (1, −1), ∇f(x, y) = -1·i -3·j is the y direction.

The rate is f decreasing is -3 .

(b) (i) The gradient of F is (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k is  ñ∙∇F =  4·x +⅟4 (8-3√3)y+ 9/4·z at (1, 1, −5)

4 +⅟4 (8-3√3)+ 9/4·(-5) = -6.549 .

Explanation:

f(x, y) = x²·y·eˣ⁻¹+2·x·y²

The gradient of f = grad f(x, y) = ∇f(x, y) = ∂f/∂x i+  ∂f/∂y j = = (∂x²·y·eˣ⁻¹+2·x·y²)/∂x i+  (∂x²·y·eˣ⁻¹+2·x·y²)/∂y j

= ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) at the point (1, -1) we have  

∇f(x, y) = -1·i -3·j  that is the direction in which f decreases most rapidly at the point (1, −1) is the y direction.  

The rate is f decreasing is -3

(b) F(x, y, z) = x² + 3·y·z + 4·x·y.

The gradient of F is given by grad F(x, y, z)  = ∇F(x, y, z) = = ∂f/∂x i+  ∂f/∂y j+∂f/∂z k = (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2·i + 3·j −√3·k

The magnitude of the vector 2·i +3·j -√3·k is √(2²+3²+(-√3)² ) = 4, the unit vector is therefore  

ñ = ⅟4(2·i +3·j -√3·k)  

The directional derivative is given by ñ∙∇F = ⅟4(2·i +3·j -√3·k)∙( (2·x+4·y)i + (3·z+4·x)j + 3·y·k)  

= ⅟4 (2((2·x+4·y))+3(3·z+4·x)- √3∙3·y) = 4·x +⅟4 (8-3√3)y+ 9/4·z at point (1, 1, −5) = -6.549

You might be interested in
A traditional set of cycling rollers has two identical, parallel cylinders in the rear of the device that the rear tire of the b
mars1129 [50]

Answer:

ω2  =  216.47 rad/s

Explanation:

given data

radius r1 =  460 mm

radius r2 = 46 mm

ω =  32k rad/s

solution

we know here that power generated by roller that  is

power = T. ω    ..............1

power = F × r × ω

and this force of roller on cylinder is equal and opposite force apply by roller

so power transfer equal in every cylinder so

( F × r1 × ω1)  ÷ 2 = (  F × r2 × ω2 )  ÷  2    ................2

so

ω2  =  \frac{460\times 32}{34\times 2}

ω2  =  216.47

8 0
3 years ago
Consider the Uniform Circular Motion Gizmo configured as shown. Notice that, under the current settings, |a|=0.50m/s2. What chan
Eddi Din [679]

To increase the centripetal acceleration to 2.00 m/s^2, you can double the speed or decrease the radius by 1/4

Explanation:

An object is said to be in uniform circular motion when it is moving at a constant speed in a circular path.

The acceleration of an object in uniform circular motion is called centripetal acceleration, and it is given by

a=\frac{v^2}{r}

where

v is the speed of the object

r is the radius of the circular path

In the problem, the original centripetal acceleration is

a=0.50 m/s^2

We want to increase it by a factor of 4, i.e. to

a'=2.00 m/s^2

We notice that the centripetal acceleration is proportional to the square of the speed and inversely proportional to the radius, so we can do as follows:

- We can double the speed:

v' = 2v

This way, the new acceleration is

a'=\frac{(2v)^2}{r}=4(\frac{v^2}{r})=4a

so, 4 times the original acceleration

- We can decrease the radius to 1/4 of its original value:

r'=\frac{1}{4}r

So the new acceleration is

a'=\frac{v^2}{(r/4)}=4(\frac{v^2}{r})=4a

so, the acceleration has increased by a factor 4 again.

Learn more about centripetal acceleration:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

5 0
3 years ago
An adiabatic nozzle has an inlet area of 1 m^2 and an outlet area of 0.25 m^2. Water enters the nozzle at a rate of 5 m^3/s and
svlad2 [7]

Answer:

v=20m/S

p=-37.5kPa

Explanation:

Hello! This exercise should be resolved in the next two steps

1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed

Q=VA

for he exitt

Q=flow=5m^3/s

A=area=0.25m^2

V=Speed

solving for V

V=\frac{Q}{A} \\V=\frac{5}{0.25} =20m/s

velocity at the exit=20m/s

for entry

V=\frac{5}{1} =5m/s

2.

To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

\frac{P1}{\alpha } +\frac{v1^2}{2g} =\frac{P2} {\alpha } +\frac{v2^2}{2g}

where

P=presure

α=9.810KN/m^3 specific weight for water

V=speed

g=gravity

solving for P1

(\frac{p1}{\alpha } +\frac{V1^2-V2^2}{2g})\alpha  =p2\\(\frac{150}{9.81 } +\frac{5^2-20^2}{2(9.81)})9.81  =p2\\P2=-37.5kPa

the pressure at exit is -37.5kPa

7 0
3 years ago
A block weighing 400 kg rests on a horizontal surface and supports on top of it ,another block of weight 100 kg which is attache
Paladinen [302]

Answer:

F_a=1470\ N

Explanation:

<u>Friction Force</u>

When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.

There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.  

Please find the free body diagrams in the figure provided below.

The equilibrium condition for the mass 1 is

\displaystyle F_a-F_{r1}-F_{r2}=m.a=0

The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa

\displaystyle F_a=F_{r1}+F_{r2}.....[1]

The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is

\displaystyle F_{r2}-T=0

The friction forces are computed by

\displaystyle F_{r2}=\mu \ N_2=\mu\ m_2\ g

\displaystyle F_{r1}=\mu \ N_1=\mu(m_1+m_2)g

Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.

Replacing in [1]

\displaystyle F_{a}=\mu \ m_2\ g\ +\mu(m_1+m_2)g

Simplifying

\displaystyle F_{a}=\mu \ g(m_1+2\ m_2)

Plugging in the values

\displaystyle F_{a}=0.25(9.8)[400+2(100)]

\boxed{F_a=1470\ N}

8 0
3 years ago
What is the relationship between Hectare and cubic meter<br>​
kap26 [50]
Answer;

1 hectare meter is equal to 10000 cubic meter.

8 0
2 years ago
Other questions:
  • Will give brainlist if answer question!
    9·1 answer
  • What is the difference between 3.15 m and 2.006 m with the correct number of significant figures
    12·2 answers
  • Which of the following is an observation? A. The baby was crying very loudly; therefore, he must have been hungry. B. Jason star
    6·2 answers
  • The weigth of a body decrease in a coal mine why?​
    15·2 answers
  • A string of length 0.6 M is vibrating at 100 Hz and its second harmonic and producing sound that moves at 340 m/s. What is true
    7·2 answers
  • The forces of gravity between the earth and the moon causes
    10·1 answer
  • 9. The three types of stress that act on Earth's rocks are compression, tension, and A. strain. B. shear. C. tephra. D. shale.
    13·2 answers
  • What is a volt as applied in physics ​
    15·1 answer
  • If my candle has a brightness of 15 candela from a distance of 2 meter. What would the brightness be at a distance of 6 meters?
    13·1 answer
  • What is kinematics ???<br>need a legendary answer -,-" <br>xD ​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!