1) A The 78g
2) C Push on the wagon in the opposite direction as Jack with a force that is the same as Jack is applying.
Answer:Visible light is a small part of the electromagnetic spectrum. The spectrum covers everything from gamma rays, x-rays, visible light, infrared, microwave and radio waves. Each part of the spectrum, including the different colors of visible light, have different wavelengths (the space between each wave).
Explanation:
initial speed of 226000 m/s
acceleration of 4.0 x 1014 m/s2,
speed of 781000 m/s
What is Acceleration?
- Acceleration is a rate of change of velocity with respect to time with respect to direction and speed.
- A point or an object moving in a straight line is accelerated if it speeds up or slows down.
- Acceleration formula can be written as,
a = (v - u ) / t m/s²
As we have to find the time taken, the formula can be altered as,

where, t - time taken to reach a final speed
v - final velocity
u - initial velocity
a - acceleration.
Substituting all the given values,

= 1.3875 × 10⁻⁹ seconds.
So, taken to reach the final speed is found to be 1.3 × 10⁻⁹ 8iH..
Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs
Answer:
1) v = 0.45 m/s
2) v = 0.65 m/s
3) v = 0.75 m/s
Explanation:
1) We can find the speed of the object by conservation of energy:


Where:
k: is the spring constant = 280 N/m
v: is the speed of the object =?
m: is the mass of the object = 5.00 kg
x: is the displacement of the spring

2) When the object is 5.00 cm (0.050 m) from equilibrium, the speed of the object is:
3) When the object is at the equilibrium position, the speed of the object is:

I hope it helps you!