Here are the answers to the given question above.
<span>Relative dating uses laws or principles of stratigraphy and paleontology. These laws of relative dating are:
-</span><span>law of original horizontality
-</span><span>law of superposition
-</span><span>law of original lateral continuity
-</span><span>law of cross-cutting or intrusive relationships
Hope these are the answers that you are looking for.</span>
3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Explanation:
It is given that,
Velocity of the electron, 
Magnetic field, 
Charge of electron, 
(a) Let
is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

![F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)]](https://tex.z-dn.net/?f=F_e%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B%282%5Ctimes%2010%5E6i%2B3%5Ctimes%2010%5E6j%29%5Ctimes%20%280.030i-0.15j%29%5D)


(b) The charge of electron, 
The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. To determine acceleration, we need to know the initial velocity and the final velocity and the time elapsed. From the given values, we need t o calculate for the initial velocity. We use some kinematic equations. We do as follows:
x = v0t + at^2/2
60 = v0(6) + a(6)^2/2
60 = 6v0 + 18a (EQUATION 1)
vf = v0 + at
15 = v0 + a(6)
15 = v0 + 6a (EQUATION 2)
Solving for v0 and a,
v0 = 5 m/s
a = 1.7 m/s^2
Answer:
An elliptical orbit is the revolving of one object around another in an oval-shaped path called an ellipse. The planets in the solar system orbit the sun in elliptical orbits. Many satellites orbit the Earth in elliptical orbits as does the moon.