Answer:
3.47km/h with a direction of 67.8 degrees north of west.
Explanation:
First we need to calculate the displacement on the X axis, so:

then on the Y axis:

The magnitud of the displacement is given by:

and the angle:
that is 67.8 degrees north of west.

C) electrical energy is transformed into heat energy
Answer:
If this is electrical currents , make the wire longer, smaller diameter wires, heat it up
Answer:
a) v = 0.7071 v₀, b) v= v₀, c) v = 0.577 v₀, d) v = 1.41 v₀, e) v = 0.447 v₀
Explanation:
The speed of a wave along an eta string given by the expression
v = 
where T is the tension of the string and μ is linear density
a) the mass of the cable is double
m = 2m₀
let's find the new linear density
μ = m / l
iinitial density
μ₀ = m₀ / l
final density
μ = 2m₀ / lo
μ = 2 μ₀
we substitute in the equation for the velocity
initial v₀ =
with the new dough
v =
v = 1 /√2 \sqrt{ \frac{T_o}{ \mu_o} }
v = 1 /√2 v₀
v = 0.7071 v₀
b) we double the length of the cable
If the cable also increases its mass, the relationship is maintained
μ = μ₀
in this case the speed does not change
c) the cable l = l₀ and m = 3m₀
we look for the density
μ = 3m₀ / l₀
μ = 3 m₀/l₀
μ = 3 μ₀
v =
v = 1 /√3 v₀
v = 0.577 v₀
d) l = 2l₀
μ = m₀ / 2l₀
μ = μ₀/ 2
v =
v = √2 v₀
v = 1.41 v₀
e) m = 10m₀ and l = 2l₀
we look for the density
μ = 10 m₀/2l₀
μ = 5 μ₀
we look for speed
v =
v = 1 /√5 v₀
v = 0.447 v₀
Answer:
Crumple zones are designed to absorb and redistribute the force of a collision. ... Also known as a crush zone, crumple zones are areas of a vehicle that are designed to deform and crumple in a collision. This absorbs some of the energy of the impact, preventing it from being transmitted to the occupants.