Answer:
The purpose of a coal burning power plant is to produce electricity so its A
For the given molecule, we are asked to give-
- The electron configuration of an isolated B atom
- The electron configuration of an isolated F atom
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride
- valence orbitals, if any, remain unhybridized on the B atom.
- The electron configuration of an isolated B atom:
as atomic number of B is 5
electronic configuration will be [He] 2s² 2p¹
- The electron configuration of an isolated F atom:
as atomic number of F is 9
electronic configuration will be [He] 2s² 2p5
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride will be sp2.
as the one s and two of p orbital from the valance shell will hybridised to make 3 hybrid orbital of B resulting in 3 B-F bonds.
- valence orbitals, if any, remain unhybridized on the B atom will be 1
To know more about hybrisisation:
brainly.com/question/23038117
#SPJ4
We have Kc = 4.2 x 10^-2 (given but missing in the question)
and When the balanced equation for this reaction is:
PCl5(g) ↔ PCl3(g) + Cl2(g)
so, according to the Kc formula:
Kc = the concentration of products / the concentration of the reactants
so, to get the concentration of the reactants in equilibrium, the concentration of the products / the concentration of the reactants should equal the Kc value which is given in the question (missing in your question).
So by substitution in Kc formula:
Kc = [PCl3]*[Cl2] / [PCl5]
4.2 x 10^-2 = 0.18 * 0.25 /[PCl5]
∴[PCl5] = 0.18*0.25 / 4.2x10^-2 = 1.07
So the concentration of the reactants in equilibrim = 1.07