Answer:
B I have taken the quiz already 90%
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles
Answer:
Any characteristic that can be determined without changing the substance's chemical identity. chemical property: Any characteristic that can be determined only by changing a substance's molecular structure
Explanation:
Answer:
for the reaction is 5.55
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,
At eqm. conc. (0.010) M (0.15) M (0.37) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[Cl_2]\times [PCl_3]}{[PCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D%7B%5BPCl_5%5D%7D)
Now put all the given values in this expression, we get :


Thus the
for the reaction is 5.55
Static. Is the bond if u need 2 know