This reaction is known as
Wittig Reaction. A powerful reaction for the synthesis of
Alkene. In question the starting materials are
aldehyde and a Phosphorous
Ylide. Ylide when reacted with aldehyde produces a four membered ring which on
rearrangement gives Alkene and triphenylphosphine oxide. Phosphorous having great
affinity toward the oxygen is the driving force of this rearrangement. The reaction along with product (highlighted
blue) is as follow,
Answer:
See attachment.
Explanation:
In the first step, a cyclic structure with a positive bromine is formed. The bromine shares the positive charge with the two carbons that it is bonded to, so the carbons are partially positive.
The second bromine atom then attacks the carbon center, coming in from below the first bromine atom ("backside attack") where the antibonding orbital of the second bromine atom is.
The stereochemistry of the mechanism causes the final product to be an anti-dibromocyclohexane.
Answer:
moles = 36/180 = 0.2 moles
molarity = 0.2/2 = 0.1 mol/dm3
Kelvin (K) is the only scale that has a numeral value assigned to absolute zero.