Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you
Answer:
Explanation:
Given parameters:
Volume of CO₂ = 24cm³
time taken for the reaction to complete = 8minutes.
Unknown:
rate of reaction
Soution
The reaction rate is a measure of speed of a chemical reaction. It is often calculated using the expression below:
Reaction rate = 
Reaction rate =
= 3cm³/min
In this reaction, 3cm³ of carbon dioxide were produced per minute
Answer:
Explanation:
YES BECAUSE YE SIS YES WHEN YES=![\sqrt{x} x^{2} x^{2} \neq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%7Bx%7D%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Cneq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
GAMER MOMENT FROM LUIGI FOR⇔![\sqrt{x} x^{2} x^{2} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \alpha \alpha \alpha x_{123} \frac{x}{y} \pi \neq \geq \leq \\ \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx x^{2} \sqrt{x} \sqrt{x} \\](https://tex.z-dn.net/?f=%5Csqrt%7Bx%7D%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Calpha%20%5Calpha%20%5Calpha%20x_%7B123%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cpi%20%5Cneq%20%5Cgeq%20%5Cleq%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%5Csqrt%7Bx%7D%20%5C%5C)
Answer:
oxygen
Explanation:
pls mark me brainliest right
As per the law of constant composition, a given sample will always contain the same number of elements that combine in the same mass proportion.
Therefore if a sample of 13.97 g of NaBr contains 22.39 % of Na by mass then, a sample of 5.75 g of NaBr would also contain 22.39% Na by mass
Hence:
Mass of Na = 5.75 g * 22.39/100 = 1.287 g
5.75 g of NaBr would contain 1.29 g of Na