1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
10

Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a

way in 10 s. Brad calculates that her speed is 0.005 m/s. Is he correct? If not, explain the flaw or flaws in his problem solving process.
Physics
2 answers:
Dmitriy789 [7]3 years ago
7 0
It is corecct becasue it 10 s more added from 0.05
Olegator [25]3 years ago
3 0

Answer:

He is incorrect!  Her speed was 5m/s.

Explanation:

For calculating the speed, first we shall remember that:

v=\dfrac{d}{t}

Where v is the speed, d is the distance travelled and, t is the time it takes to travel distance d.

So one migth think that velocity can be easely compute:

v=\dfrac{0.05}{10}

v=0.005\dfrac{m}{s}

Be carefull, he does not make a proper dimensional analisis!  

Before computing the speed we must know in what dimensions our values are.

d=0.05km, distances is measure in Kilometers.

t=10s, time is measure in seconds.

If we want our speed to be in m/s, first we need to be sure that our values are expressed  in meters and seconds.

Time is already  expressed in seconds, distance is not in Kilometers.

So

0.05Km=50m,

now we can compute the speed:

v=\dfrac{d}{t}

v=\dfrac{50m}{10s}

v=\5dfrac{m}{s}

You might be interested in
A circuit consists of a battery connected to three resistors (65 ω, 25ω, and 170ω) in parallel. the total current through the re
White raven [17]
A. To find the total emf of the battery, just remember that in a parallel circuit, the voltage is the same throughout the circuit. So you can get the total voltage of the circuit by using Ohm's Law. 

I= \frac{V}{R}

Where:
I = current (A)
V = Voltage (V) (emf)
R = Resitance (Ω)

Now you can derive the formula of Voltage by transposing the Resistance to the other side of the equation to isolate Voltage. The formula you will now use will be:
V = IR

However, you cannot solve this yet because the resistance you need is the total resistance in the circuit. To do this, you need to get the total resistance in this parallel circuit and the formula would be:

\frac{1}{R_{T}} =  \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

You have three resistors with the following resistance:
65Ω, 25Ω and 170Ω
\frac{1}{R_{T}} = \frac{1}{R_{1}}+ \frac{1}{R_{2}}+ \frac{1}{R_{3}}...+ \frac{1}{R_{n}}

\frac{1}{R_{T}} = \frac{1}{R_{65}}+ \frac{1}{R_{25}}+ \frac{1}{R_{170}}


\frac{1}{R_{T}} =0.0153+0.04+0.006+0.0059
\frac{1}{R_{T}} =0.0613

Get the reciprocal of both sides and divide:

R_{T} =  \frac{1}{0.0613} =16.32

The total resistance then is 16.32Ω

Now that you have the total resistance, you can solve for the total voltage:
V = IR
V = (1.8)(16.32)
V = 29.376V

The emf of the battery is 29.376V


B. To find the resistance in each resistor, just apply Ohm's law again. In a parallel circuit, the voltage is the same, but the current that runs through it is different for each resistor. Now just solve for the current of each using the same voltage.

Resistor 1: 65Ω
I= \frac{V}{R}
I= \frac{29.376}{65}
I= 0.45A

The current flowing through resistor 1 with a resistance of 65Ω is 0.45A.

Resistor 2: 25Ω
I= \frac{V}{R}
I= \frac{29.376}{25}
I= 1.18A
The current flowing through resistor 2 with a resistance of 25Ω is 1.18A.

Resistor 3: 170Ω
I= \frac{V}{R}
I= \frac{29.376}{170}
I= 0.17A

The current flowing through resistor 3 with a resistance of 170Ω is 0.17A.

If you add up all their current it confirms the given that the total current running through all of them is 1.8A.
4 0
3 years ago
Braddy connected the loose wire to the battery and created an electromagnet. He picked up 45 thumb tacks with his electromagnet,
Katarina [22]

Answer:

C) Use two batteries instead of one.

Explanation:

-Strength of an electromagnet depends on the electrical current which flows through the wires.

-Two batteries have a higher current than one and thus higher strength in the electromagnet.

3 0
3 years ago
As SCUBA divers go deeper underwater, the pressure from the weight of all the water above them increases tremendously which comp
slavikrds [6]

Answer: A.

As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.

Explanation:

The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.

The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.

4 0
3 years ago
What potential increase vac must an electron be accelerated through if the most energetic photon it can emit will scatter off of
nikitadnepr [17]
Referring to Compton scattering 
Δλ = h/m₀c (I- cos Ф)
λ' =λ = (0,0242×10⁻¹⁰) (1- cos 60°)
λ= λ' -(0.0242 × 10⁻¹⁰) (1- cos 60°)

7.19 ˣ 10⁻¹²m

The increased potential is given by 
Vₐc = hc/eλ = 6.625 × 10 ⁻³⁴ J,s) ( 3× 10⁸ m/s ( 1.6 ˣ 10 ⁻¹⁰C)
(7.19 ˣ 10⁻¹²m)

173kV.
7 0
3 years ago
A 2 kg rock is at the edge of a cliff 20 meters above a lake The rock becomes loose and falls toward the water below. Calculate
natima [27]

Answer:

The potential energy (P.E) at the top is 392 J

The kinetic energy (K.E) at the top is 0 J

The potential energy (P.E) at the halfway point is 196 J.

The kinetic energy (K.E) at the halfway point is 196 J.

Explanation:

Given;

mass of the rock, m = 2 kg

height of the cliff, h = 20 m

speed of the rock at the halfway point, v = 14 m/s

The potential energy (P.E) and kinetic energy (K.E) when its at the top;

P.E = mgh

P.E = (2)(9.8)(20)

P.E= 392 J

K.E = ¹/₂mv²

where;

v is velocity of the rock at the top of the cliff = 0

K.E = ¹/₂(2)(0)²

K.E = 0

The potential energy (P.E) and kinetic energy (K.E) at the halfway point;

P.E = mg(¹/₂h)

P.E = (2)(9.8)(¹/₂ x 20)

P.E = 196 J

K.E = ¹/₂mv²

where;

v is velocity of the rock at the halfway point = 14 m/s

K.E = ¹/₂(2)(14)²

K.E = 196 J.

4 0
2 years ago
Other questions:
  • 1. Which statement about subatomic particles is not true?
    6·1 answer
  • Find the speed of a long distance runner who runs 30km in 6 hours
    8·2 answers
  • A car and a train move together along straight, parallel paths with the same constant cruising speed v(initial). At t=0 the car
    11·1 answer
  • A portable music player, operating with four 1.5 V cells connected in series, provides a resistance of 15 000 Ω. What amount of
    10·1 answer
  • Help please :) 15 points.
    8·1 answer
  • A compass originally points North; at this location the horizontal component of the Earth's magnetic field has a magnitude of 2e
    12·1 answer
  • A magnet that is dropped may lose its ______.​
    9·1 answer
  • Which image shows an example of the strong nuclear force in action?
    14·1 answer
  • Brandy has built a computer model of a weather system. She has included information about bodies of water, the Sun, and the atmo
    7·1 answer
  • a 1500 kg vehicle is traveling on a curved, icy road. the road is banked at an angle of 10.0 degrees and has a radius of curvatu
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!