Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence

Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence


given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0

Answer:
c = 1163.34 J/kg.°C
Explanation:
Specific heat capacity:
"Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property."
Use this equation:
mcΔT = ( mw c + mAl cAl ) ΔT'
Rearranging the equation to find the specific heat (c) you get this:
c = (( mw c + mAl cAl ) ΔT') / (mΔT)
c = (( 0.285 (4186) + (0.15)(900)) (32 -25.1)) / ((0.125) (95 - 32))
c = 1163.34 J/kg.°C
Answer:
1470kgm/s
Explanation:
Given parameters:
Mass of the rock = 50kg
Time taken for the free fall = 3s
Unknown:
Change in momentum = ?
Solution:
The change in momentum will be difference between the ending momentum and finishing momentum.
Momentum is the product of mass and velocity
Momentum = mass x velocity
Initial momentum = 0, the velocity is 0
Final momentum = mass x final velocity
let us find the final velocity;
V = U + gt
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity = 9.8m/s²
t is the time
V = 0 + 9.8x3 = 29.4m/s
So;
Change in momentum = 50 x 29,4 = 1470kgm/s