You can use photomath for this
I have an expression

floating around in my head; let's see if it makes sense.
The variance of binary valued random variable b that comes up 1 with probability p (so has mean p) is

That's for an individual sample. For the observed average we divide by n, and for the standard deviation we take the square root:

Plugging in the numbers,

One standard deviation of the average is almost 2% so a 27% outcome was 3/1.9 = 1.6 standard deviations from the mean, corresponding to a two sided probability of a bit bigger than 10% of happening by chance.
So this is borderline suspect; most surveys will include a two sigma margin of error, say plus or minus 4 percent here, and the results were within those bounds.
The answer is one.
Hope this helped.
First, find the product (w*r)(x): (w*r)(x) = (x-2)*[2-x^2] = 2x - x^3 - 4 + 2x^2
This is a cubing function. Since the sign of the cube-of-x term is negative, the graph will begin in Quadrant II and pass through Quadrant IV. There are no limits on y. Thus, the range is (-infinity, +infinity).