Answer:
Explanation:
Given that,
Charge density is λ = 12 nC/m
And radius 3cm
r=0.03m.
The charge density of a along a circular arc is given as
λ= Q/πr
Then, Q=πrλ
Q=π×0.03×12×10^-9
Q=1.131×10^-9 C
Q=1.131 nC
Then, electric field along x axis is symmetrical and if cancels out
Now, Ey is in the negative direction
Electric field is given as,
Ey=-2kQ/πr²
K is constant =9×10^9Nm²/C²
Ey=-2×9×10^9×1.131×10^-9/(π ×0.03²)
Ey=7200 N/C.
The direction is negative direction of y axis, check attachment for diagram.
b. Electric potential at the origin is given as
V=Ed
d=r=0.03
V=7200×0.03
V=216V
Answer:
To measure work, you must multiply the force by the distance through which it acts.
==> Take an Earth weight. Don't forget the unit.
==> Multiply it by 0.166 .
==> The product is its Moon weight. Don't forget the unit.
Example:
If I weigh 1,000 lbs on Earth.
Multiply 1,000 lbs by 0.166 .
I weigh 166 lbs on the Moon
Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Answer:
acceleraions 5.76g and 20.55g
Explanation:
This constant acceleration exercise can be solved using the kinematic equations in one dimension
Vf = Vo + a t
As part of the rest Vo = 0
a = Vf / t
a = 282/5
a = 56.4 m / s2
In relation to the acceleration of gravity
a ’= a / g = 56.4 / 9.8
a ’= 5.76g
To calculate the acceleration to stop we use the same formula
a2 = 282 / 1.40
a2 = 201.4 m / s2
This acceleration of gravity acceleration function is
a2 ’= 201.4 / 9.8
a2 ’= 20.55g