The formula that links voltage (V), resistance (R) and current intensity (I) is

Solve this formula for I to get

Plug your values for V and R and you'll get the current.
Answer:
kinematics is a subfield of physics developed in classical mechanics that describes the motion of point , bodies (objects) , and systems of bodies (group of objects ) without considering the forces that cause them to move
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer:
Insulation helps to prevent that transfer of heat.
Answer:
1. A glass of water at 80°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the water will recieve. So in comparison to 20°C, 80°C has more energy in it because it has a higher temperature.
2. An aluminium can at 30°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the aluminium will recieve. So in comparison to 20°C, 30°C has more energy in it because it has a higher temperature.
Brainliest pweaseee if it is the correct answer! <3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~