In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because of friction.
AMA (Actual mechanical advantage) is found by dividing output force by effort force. The actual mechanical advantage will always be less than the ideal mechanical advantage. The ideal mechanical advantage assumes perfect efficiency which doesn't account for friction, while actual mechanical advantage does. Therefore; the IMA is always greater than the actual mechanical advantage because all machines must overcome friction.
B is the answer, I’m really good at this subject
Answer: 8*10^-15 N
Explanation: In order to calculate the force applied on an electron in the middle of the two planes at 500 V we know that, F=q*E
The electric field between the plates is given by:
E = ΔV/d = 500 V/0.01 m=5*10^3 N/C
the force applied to the electron is: F=e*E=8*10^-15 N
Explanation:
<u>Mass of car</u> = 137.5 kg
<u>Acceleration</u> = v - u / t = 26 - 0 / 6 = 4.33 m/sec^2
Force = m * a = 137.5 * 4.33 = 595.3 N
I believe it’s A, i could be wrong tho 3